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INTRODUCTION
For a new biomarker to become a routine measure in clinical 
practice, at least 4 questions should be addressed (1). The 
first considers whether the biomarker is associated with 
morbidity and mortality independent of the biomarkers com-
monly obtained in clinical settings. The second seeks to 
determine whether the addition of the biomarker improves 
risk stratification. In the current context, the question is, 
“does the addition of cardiorespiratory fitness (CRF) to 
established risk prediction algorithms (risk engines) enhance 
risk prediction?” Third, can the biomarker be measured 
pragmatically in health care settings, and fourth, can it be 
improved in response to treatment consistent with consensus 
recommendations? In this brief, narrative review, our 
response to these questions provides the structure used to 
support the recommendation that the routine incorporation 
of CRF into health care settings reflects best evidence and, 
consequently, will improve patient or client management. 

For further details in support of this recommendation, the 
reader is referred to references 2–8.

WHAT IS CARDIORESPIRATORY FITNESS?
CRF is a human trait that refers to the ability of the circula-
tory and respiratory systems to supply oxygen to skeletal 
muscles during all forms of physical activity. Specifically:

CRF quantifies the functional capacity of an indi-
vidual and is dependent on a linked chain of pro-
cesses that include pulmonary ventilation and dif-
fusion, right and left ventricular function (both 
systole and diastole), ventricular-arterial coupling, 
the ability of the vasculature to accommodate and 
efficiently transport blood from the heart to pre-
cisely match oxygen requirements, and the ability 
of the muscle cells to receive and use the oxygen 
and nutrients delivered by the blood, as well as to 
communicate these metabolic demands to the car-
diovascular control center. (2)
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The implication is that CRF is a unique trait that reflects 
the integrated function of numerous systems and, thus, is a 
good representation of total body health. The fact that CRF 
reflects the integrity of numerous systems at least partially 
explains why CRF predicts morbidity and mortality risk 
beyond commonly obtained risk factors.

ARE MEASURES OF CRF ASSOCIATED WITH 
MORBIDITY AND MORTALITY INDEPENDENT OF 

COMMONLY OBTAINED RISK FACTORS?
There is now indisputable evidence that CRF is inversely 
associated with mortality and numerous morbidities inde-
pendent of age, biological sex, race or ethnicity, and com-
monly obtained risk factors (2–11). The association between 
CRF and mortality was underscored in a meta-analysis by 
Kodama et al. (9) and updated more recently in a meta-
analysis by Harber et al. (10). Data from 33 studies, includ-
ing nearly 103,000 participants, revealed that, in comparison 
with subjects in the high CRF tertile, those with low CRF 
had 70% and 56% higher risks for all-cause and cardiovas-
cular mortality, respectively. The authors observed that for 
every 1 metabolic equivalent of task (MET) higher CRF, 
cardiovascular and all-cause mortality were reduced by 13% 
and 15%, respectively. These meta-analyses also confirmed 
the previous finding that the greatest mortality benefits occur 
when progressing from the least fit and the next least fit 
group; lesser improvements in health outcomes were noted 
when individuals in the moderate- to high-fit groups were 
compared, suggesting that the association between CRF and 
health outcomes may plateau at higher CRF values. Recently, 
Mandsager et al. (11) assessed the association between CRF 
and all-cause mortality in a cohort of 122,007 subjects strati-
fied into 5 age- and sex-matched CRF groups: low (<25th 
percentile), below average (25th–49th percentile), above 
average (50th–74th percentile), high (75th–98th percentile), 
and elite (≥98th percentile). The increases in all-cause mor-
tality associated with reduced CRF (low versus elite: 
adjusted heart rate [HR] = 5.04; 95% confidence interval 
[CI] = 4.10–6.20; below average versus above average: 
adjusted HR = 1.41; 95% CI = 1.34–1.49) was comparable 
with or greater than traditional clinical risk factors. While 
these findings confirm that CRF is inversely associated with 
mortality, they also suggest that the association between 
CRF and all-cause mortality may not have an upper limit of 
benefit.

Many of the studies that first considered the associa-
tions between CRF and health outcomes were based on the 
observation of a single baseline measure of CRF. A growing 
number of more recent studies have examined the associa-
tion between changes in CRF across 3–6 years and mortality 
in both asymptomatic and diseased populations. These stud-
ies have confirmed earlier observations based on a single 
measure (7). In a seminal study, Blair et al. (12) demonstrated 
that men who remained fit over 5 years between measures of 
CRF had a relative risk of 0.33 (95% CI = 0.23–0.47) for 
all-cause mortality and a relative risk of 0.22 (95% CI = 
0.12–0.39) for cardiovascular disease (CVD) mortality 

compared with those who were unfit, after adjusting for all 
known confounders. These seminal observations were sub-
sequently confirmed in numerous studies (2,7).

DOES CRF IMPROVE RISK ESTIMATES FOR 
MORBIDITY AND MORTALITY?

Despite considerable evidence demonstrating that CRF is 
independently associated with CVD and/or all-cause mortal-
ity, resistance to its routine incorporation into clinical prac-
tice remains. One plausible explanation is the lack of appre-
ciation among clinicians of the fact that the addition of CRF 
improves risk prediction models. For CRF to truly be a novel 
risk marker, it must improve risk prediction beyond tradi-
tional markers. A growing body of evidence now indicates 
that the addition of CRF to risk engines designed to deter-
mine absolute risk of CVD (e.g., the Framingham coronary 
heart disease risk assessment algorithm) enhances risk strati-
fication (2). Recent studies have applied a statistical tech-
nique termed net reclassification improvement (NRI) to 
address this issue. NRI quantifies the extent to which a given 
risk marker adds to existing markers to predict adverse out-
comes. It indicates whether the addition of a biomarker cor-
rectly and significantly alters risk classification and is 
defined as the net change in risk among those who do and do 
not experience an event (13). Using traditional risk factors as 
a standard for comparison (e.g., age, sex, hypertension, dia-
betes, hyperlipidemia, smoking), these studies have reported 
NRI values in the range of 10% to 30% by adding CRF to 
traditional risk models (14–18). Both directly measured 
CRF and CRF estimated from nonexercise test models have 
been applied for this purpose. These findings demonstrate 
that the addition of CRF to traditional models markedly 
improves the ability to estimate risk for mortality and car-
diovascular events.

The observation that the addition of CRF to traditional 
risk factors results in significant improvement in risk predic-
tion is important and may help convince those in clinical 
practice that CRF should be a vital sign routinely measured 
in clinical settings. Regardless, the fact that improvements in 
CRF are strongly associated with corresponding reductions 
in CVD risk is of equal if not greater importance. In short, 
CRF remains a simple evidence-based target within all clini-
cal settings and provides practitioners with an opportunity to 
counsel patients or clients on the health benefits of lifestyle-
based strategies designed to reduce health risk. In addition to 
improving risk prediction modeling, CRF serves as an 
important modifiable treatment target for risk reduction.

NONEXERCISE APPROACHES  
TO ESTIMATING CRF

If CRF is to be used as a risk factor routinely measured in 
clinical practice and considered of equal importance to tradi-
tional risk factors, it needs to be simple, rapid, and inexpen-
sive to obtain. While the most accurate metric for CRF 
requires a maximal exercise test, it is neither feasible nor 
appropriate to perform an exercise test during routine clini-
cal encounters. In addition to time and cost factors, 
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performing an exercise test in most individuals does not 
meet appropriate use criteria (19). A 2018 update of the US 
Preventive Services Task Force (USPSTF) Recommenda-
tions on Resting or Exercise Electrocardiography (20) did 
not recommend routine exercise testing for asymptomatic 
individuals. This is in accordance with earlier recommenda-
tions from the USPSTF (21) and other guidelines on exercise 
testing (22,23). This recommendation is based in part on the 
tests’ limited predictive accuracy for detecting CVD (the 
percentage of times the test provides a correct result) in 
asymptomatic individuals and its low cost effectiveness. 
These guidelines are consistent in recommending that an 
exercise test should generally be performed only in patients 
with known or suspected CVD. How then should CRF be 
routinely incorporated into clinical practice?

There have been a growing number of efforts in recent 
years to estimate CRF without exercise testing. These stud-
ies have applied easily available information such as age, 
body mass index (BMI), physical activity patterns, symptom 
questionnaires, smoking history, and other factors that have 
a potential impact on CRF. A synopsis of key studies that 
have developed multivariable models to estimate CRF from 
nonexercise data is shown in Table 1 (24–39). Several obser-
vations are notable from the table. First, the associations 
between estimated and measured CRF range in the order of 
0.60 to 0.85 (using the coefficient of determination, or R2). 
This degree of association appears to be generally adequate 
in terms of classifying individuals into CRF categories (e.g., 
quartiles or quintiles). In real terms, the error between esti-
mated and measured CRF is generally in the range of 
5%–15% (24–26,32,36,39,40). Nes et al. (36), for example, 
studied >4,000 men and women using a nonexercise test 
model to estimate CRF and reported that >90% of subjects 
were correctly classified into the lowest and highest quar-
tiles of CRF. The available equations have tended to under-
estimate CRF among higher fit individuals and overestimate 
CRF among lower fit individuals (24,26,27,29,32,36,39). 
This is generally not an issue among highly fit individuals 
who would still be correctly classified into the higher CRF 
categories but is a potential concern for low fit individuals 
because correct classification is much more likely to influ-
ence their estimation of risk. Variation in results of the stud-
ies can be attributed to differences in the populations studied, 
the fact that accessible nonexercise variables differed in the 
different samples, and differences in the methods of express-
ing the association between estimated and measured exercise 
capacity. The error and variation in estimated CRF are simi-
lar to that for day-to-day variation in other risk factors such 
as blood pressure or lipids (41–43). There are several clini-
cal situations in which the measurement of CRF requires 
precision and therefore a maximal exercise test, but this 
degree of variation suggests that the available nonexercise 
estimates are acceptable for the purposes of applying CRF as 
a risk factor, for physical activity counseling, or for many 
research purposes.

There are several notable differences between the vari-
ous nonexercise methods to estimate CRF. Approaches to 

estimating CRF have ranged from submaximal cycle or 
treadmill tests, walking tests, field tests, and the application 
of clinical and demographic data that is readily available 
from clinical records or questionnaires at the time of an 
encounter. Many early studies in this area relied on field 
tests, and while these studies reported reasonable associa-
tions with measured peak VO2 from an exercise test (44–51), 
they are impractical to apply in large populations or as 
widely used public health tools. Moreover, field or submaxi-
mal tests are generally not more accurate than the use of 
nonexercise data available at the time of an encounter 
(2,26,28,39,46). The most appropriate method to estimate 
CRF from nonexercise data will undoubtedly differ depend-
ing upon the context in which CRF is applied and the sample 
being studied. For example, applying a symptom question-
naire (such as the Veterans Specific Activity Questionnaire 
(24) or Duke Activity Status Index (52)) is suitable for clini-
cally referred samples (the group for which they were devel-
oped), but most of the models have been derived from rela-
tively healthy, asymptomatic subjects for whom these tools 
would not apply. Not all samples had physical activity pat-
terns available, which is the key behavioral factor influenc-
ing CRF. Indeed, in many studies, physical activity patterns 
explained a significant proportion of variance in exercise 
capacity (24,32–36,39,53). The addition of variables such as 
gender, age, height, weight, and/or BMI to models has gen-
erally improved the accuracy of the equations; these vari-
ables are particularly appropriate when there is significant 
variation in the population characteristics. In clinical set-
tings, an optimal approach might be to automatically provide 
estimations of CRF as part of electronic medical records so 
that they are available at the time of a clinical encounter, as 
has been advocated for physical activity behavior (54).

Role of Nonexercise CRF in Epidemiologic 
Studies
A rapid and reasonably accurate nonexercise estimate of 
CRF would be particularly useful when testing large popula-
tions or performing epidemiologic research, in which exer-
cise testing of large numbers of participants is impractical. A 
growing number of studies have applied estimates of CRF 
derived from a nonexercise prediction model to estimate 
future risk of mortality, CVD events, or cancer (16,55–58). 
Notably, the risk reductions per each 1 MET higher nonexer-
cise estimate of CRF have been demonstrated to be similar 
to those using measured exercise capacity from a treadmill 
or cycle ergometer (10%–20%). Artero et al. (57) studied 
43,356 adults from the Aerobics Center Longitudinal Study 
and estimated CRF based on sex, age, BMI, waist circumfer-
ence, resting heart rate, physical activity level, and smoking 
status. After adjustment for potential confounders, both 
measured and estimated CRF were inversely associated with 
risk of all-cause mortality, CVD mortality, and nonfatal 
CVD incidence in men, and with all-cause mortality and 
nonfatal CVD in women. Importantly, measured CRF had 
superior discriminative ability than estimated CRF (c-statis-
tic 0.70 versus 0.64 for all-cause mortality and 0.74 versus 
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TABLE 1. Selected nonexercise equations to estimate cardiorespiratory fitness.

Authors Population Gender No. Age Equation R2 SEE*

Jackson et al. 
(1990)24

Employees of 
NASA

M/F 1,393/150 20–70 50.513 + 1.589 (PAR 0–7) − 0.289 (age in 
years) + 5.863 (sex, male = 1 and female = 0) 
− 0.552 (% fat)

0.66 5.35

Myers (1994)25 Veterans 
referred for an 
exercise test

M 212 62 ± 8 4.7 + 0.97 (VSAQ) − 0.06 (age). 0.67 1.43

Heil et al. 
(1995)26

Healthy M/F 210/229 20–79 36.580 + 1.347 (activity 0–7) + 0.558 (age in 
years) − 0.00781 (age2) + 3.706 (sex, male = 1 
and female = 0) − 0.541 (% fat)

0.77 4.90

Whaley et al. 
(1995)27

Active adults M/F 702/473 41.8 ± 11 61.66 + 1.832 (PAS 1–6) − 0.328 (age in years) 
+ 5.45 (sex, male = 1 and female = 0) − 0.446 
(smoking 1–8) − 0.436 (% fat) − 0.143 (RHR)

0.73 5.38

George et al. 
(1997)28

Active college 
students

M/F 50/50 18–29 44.895 + 0.688 (PAR 0–10) + 7.042 (sex, male 
= 1 and female = 0) − 0.823 (self-reported BMI) 
+ 0.738 (PFA 1–13)

0.71 3.60

Matthews et al. 
(1999)29

Healthy M/F 390/409 19–79 34.142 + 1.463 (PAS 0–7) + 0.133 (age in 
years) − 0.005 (age2) + 11.403 (sex, male = 1 
and female = 0) − 0.254 (WT in kg) + 9.170 (HT 
in m)

0.74 5.64

Malek et al. 
(2004)30

Aerobically 
trained

F 80 38 ± 9.5 22.931 + 0.392 (h/week training) + 1.035 (RPE 
6–20) + 4.368 (natural log of years of training) 
− 0.287 (age in years) + 0.309 (WT in kg) + 
0.200 (HT in cm)

0.67 4.32

Malek et al. 
(2004)31

Aerobically 
trained

M 112 40.2 ± 11.7 57.912 + 0.329 (h/week training) + 1.444 (RPE 
6–20) + 6.366 (natural log of years of training) 
− 0.346 (age in years) + 0.344 (WT in kg) + 
0.335 (HT in cm)

0.65 4.75

Jurca et al. 
(2005)32

ACLS M/F 35,826/10,364 20–70 65.835 + 2.838 (activity1) + 4.095 (activity2) + 
7.56 (activity3) + 10.675 (activity4) − 0.28 (age 
in years) + 8.715 (sex, male = 1 and female = 
0) – 0.595 (BMI) − 0.175 (RHR)

0.60 5.25

Bradshaw et al. 
(2005)33

Healthy M/F 50/50 18–65 48.073 + 0.671 (PAR 0–10) − 0.246 (age in 
years) + 6.178 (sex, male = 1 and female = 0) 
− 0.619 (BMI) + 0.712 (PFA 1–13)

0.86 3.44

Cao et al. 
(2010)34

Healthy F 148 20–69 51.853 + 0.408 (SC, 103 steps/d) + 0.060 
(MVPA in min) − 0.175 (age in years) − 0.244 
(WC in cm)

0.72 3.14

Cao et al. 
(2010)35

Healthy M 127 20–69 61.925 + 0.577 (SC, 103 steps/d) + 0.305 (VPA 
in min) − 0.338 (age in years) − 0.698 (BMI)

0.71 4.15

Nes et al. 
(2011)36

Healthy M/F 2,067/2,193 48.4 ± 13.6 100.27 + 0.226 (PA index 0–8.3) − 0.296 (age) 
− 0.369 (WC in cm) − 0.155 (RHR) for men
74.74 + 0.198 (PA index 0–8.3) − 0.247 (age) 
− 0.259 (WC in cm) − 0.114 (RHR) for women

0.61
0.56

5.70
5.14

Jang et al. 
(2012)37

Healthy M/F 113/104 34.2 ± 8.4 43.98–0.12 × age + 11.64 × gender (0 = female; 
1 = male) − 0.271 × BMI − 1.36 × smoking (0 = 
never or quit; 1 = current) + 0.70 × LTPA + 1.05 
× ATC + 0.03 × ATD + 0.035 × BMR + 0.72 × 
heavy physical work

0.79 3.36

Maranhao Neto 
(2012)38

Cardiovascular 
or metabolic 
disease

M/F 109 69.1 ± 7.4 6.095 − 0.096 (age) + 8.84 (handgrip strength/
WT) + 0.67 (RPC)

0.79 1.1 
(METs)

ACLS = Aerobics Center Longitudinal Study; ATC = ambulation time during commute; ATD = ambulation time on duty; BMI = body mass index; BMR = 
body motion rate; HT = height; LTPA = leisure time physical activity; MET = metabolic equivalent of task; MVPA = moderate to vigorous physical activity; 
NASA = National Aeronautics and Space Administration; PAR = physical activity rating; PAS = physical activity status; PFA = perceived functional ability; 
RHR = resting heart rate; RPC = rating of perceived capacity; RPE = rate of perceived exertion; SEE = standard error of estimate (in mL·kg-1·min-1); VPA = 
vigorous physical activity; VSAQ = Veterans Specific Activity Questionnaire; WC = waist circumference; WT = weight.
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0.73 for CVD mortality). Using similar nonexercise test 
variables, Stamatakis et al. (16) followed 32,319 subjects for 
a mean of 9 years and observed that a higher nonexercise 
CRF score was associated with a lower risk of mortality 
from all-causes (hazard ratios per standard deviation [SD] 
increase; 0.85 in men and 0.88 in women) and CVD (hazard 
ratios 0.75 in men and 0.73 in women). Both studies reported 
that the discriminative utility of estimated CRF was higher 
than that from any of its individual components, separately 
or together, for all-cause mortality and CVD events. In fact, 
by adding nonexercise CRF, Stamatakis et al. (16) reported 
NRIs for CVD mortality (compared with a standardized 
aggregate score of modifiable risk factors) of 27.2% and 
21.0% for men and women, respectively. Thus, for large 
population-based observational studies, nonexercise esti-
mates generally appear to provide adequate reflections of 
CRF, although they are somewhat less powerful than directly 
measured CRF. Nevertheless, these and other studies apply-
ing nonexercise estimates of CRF (16,55–58) provide further 
confirmation of the power of CRF in predicting risk for 
adverse outcomes.

Mechanisms
While the mechanisms by which nonexercise test estimates 
of CRF mediate health outcomes are not fully understood, 
they are likely similar to those for directly measured CRF. 
As described above, CRF is related to the integrated function 
of numerous physiological systems, is considered a reflec-
tion of overall health, and is a stronger predictor of risk for 
adverse outcomes than traditional risk factors. Fitter indi-
viduals tend to have more cardioprotective cardiovascular 
risk profiles (mediated in part through higher activity levels), 
more favorable autonomic tone (potentially reducing 
arrhythmogenic risk), lower risk for thrombotic events, 
reduced inflammation, and improved indices of endothelial 
function (43–45). It follows that impaired CRF relative to a 
normal age- and gender-related standard is associated with 
higher incidence of numerous chronic conditions such as 
CVD, stroke, kidney disease, metabolic syndrome, and can-
cer (3–6).

CAN CRF BE IMPROVED IN RESPONSE TO 
CONSENSUS RECOMMENDATIONS FOR 

PHYSICAL ACTIVITY?
A detailed review of the literature with respect to the dose-
response associations between physical activity and CRF are 
beyond the scope of this report. The interested reader is 
referred to references 2, 23, and 60, which provide more 
extensive reviews of the pertinent literature.

Current physical activity guidelines recommend that 
adults accumulate 150 min per week of moderate to vigor-
ous physical activity (MVPA) to achieve health benefits 
(22,23,59). Meeting these minimal guidelines has been dem-
onstrated to have numerous health benefits independent of 
changes in CRF (4,5,59). Given that physical activity is the 
primary modifiable determinant of CRF regardless of age, 
biological sex, or race (60), it follows that 150 min of weekly 

MVPA would result in an increase in CRF. However, for 
improving CRF, whether performing moderate-intensity 
exercise (3–5.9 METs) for 150 min/week at a fixed amount 
of exercise is the same as 75 min/week of vigorous intensity 
exercise (6 METs or greater) at a fixed amount remains to be 
firmly established. Determining the effects of exercise inten-
sity and amount or volume on changes in CRF has been the 
objective of several carefully controlled randomized trials 
(61–64). Church et al. (61) performed a groundbreaking 
study in which they randomized 464 sedentary, postmeno-
pausal overweight or obese women to 1 of 4 groups to deter-
mine the effects of exercise amount on CRF. The primary 
objective was to determine whether exercise levels at 50% 
below (about 75 min/week) and 50% above (about 200 min/
week) the consensus recommendation (150 min/week) were 
associated with differences in the CRF response after 9 
months. Importantly, all participants regardless of group 
exercised at 50% of their CRF (VO2peak). The principal 
finding was that CRF increased across the 3 exercise amounts 
in a graded dose-response manner.

This observation was extended by Ross et al. (63), who 
assessed the separate effects of exercise amount and inten-
sity in a sample of 300 abdominally obese adults. Partici-
pants were randomized to 1 of 4 groups: control, or 5 weekly 
sessions of low-amount, low-intensity exercise at 50% of 
maximum CRF; high-amount, low-intensity exercise at 50% 
of maximal CRF; or high-amount, high-intensity exercise at 
75% of maximal CRF. The results shown in Figure 1 illus-
trate that, like the observations by Church et al. (61), for a 
given exercise intensity (50% of maximal CRF), the 
observed increase in CRF is proportional to the increase in 
exercise amount. In addition, for a given exercise amount, a 
higher exercise intensity was associated with a correspond-
ing increase in CRF; a finding consistent with others (62). A 
novel finding was that the greatest increase in CRF was 
observed in the high-amount, high-intensity group (Figure 
1). That exercise intensity is a strong driver of improvements 
in CRF is consistent with studies showing that improve-
ments in CRF are generally greater in response to high-
intensity interval training than continuous, moderate-inten-
sity exercise (64). In summary, substantial improvements in 
CRF are observed in response to physical activity consistent 
with consensus recommendations. The fact that an increas-
ing amount and/or intensity of exercise is associated with 
further improvements in CRF provides practitioners with 
treatment options to match individual variability (ability or 
willingness) of their clients or patients to adopt physical 
activity to improve CRF.

SUMMARY
There is now overwhelming evidence demonstrating that 
CRF provides information to the practitioner that improves 
patient management independent of age, biological sex, and 
race or ethnicity. Substantial improvements in CRF can be 
achieved by following the consensus recommendations for 
physical activity, and consequently, practitioners who assess 
CRF have opportunities to counsel patients or clients on the 
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importance of physical activity. This is particularly important 
given the fact that most adults do not meet the minimal guide-
lines for physical activity (58), and CRF has been decreasing 
worldwide in recent decades (65). Simple and rapid estimates 
of CRF using nonexercise models can be critical for the pur-
poses of educating patients and the public regarding their 
CRF level and its implications for a given individual’s risk 
level. The availability of a rapid estimate of CRF also pro-
vides an impetus for the practitioner to provide physical 

activity counseling and to motivate individuals to incorporate 
physical activity in their daily lives. Nonexercise estimates of 
CRF have also been demonstrated to be useful for stratifying 
risk in large populations of subjects for the purposes of con-
ducting epidemiologic research (16,55–58). Taken together, 
it is hard to imagine why CRF is not a vital sign. Indeed, CRF 
measurement or its estimation affords all practitioners with a 
vitally important opportunity to improve patient management 
and, consequently, patient health.
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