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REVIEW

INTRODUCTION
This is part I of and 2-part series on understanding the gen-
eral processes of, and how to interpret, a systematic review 
and meta-analysis paper. The purpose of this paper (Part I) is 
to provide an introductory explanation of how to conduct a 
systematic review and meta-analysis and interpret how the 
results may translate into clinical exercise science practice.

GETTING STARTED
Often results from clinical trials are contradictory, and read-
ers are left wondering which results to believe and which to 
disregard. One possible clarification approach is to gather 
the data from all of the relevant studies and add or pool the 
data into 1 analysis. This approach is called meta-analysis. 
Often readers of journal articles will see the term “system-
atic review” used in conjunction with “meta-analysis”. Both 
systematic reviews and meta-analyses begin with the devel-
opment of a research question, and both require a systematic 
search and review of the literature to find studies that meet 

the predetermined inclusion criteria used to answer that par-
ticular question. Figure 1 illustrates how the data for meta-
analysis might come from a search of relevant randomized 
controlled trials (RCTs). When an RCT is identified, it is 
then reviewed for predetermined inclusion and exclusion 
criteria in a systematic process. If the RCT is included, its 
data will be used in the meta-analysis. This process is pre-
sented below.

The inclusion criteria refer to the defined intervention or 
treatment population (P) (e.g., type 2 diabetes), the interven-
tion or treatment (I) (e.g., aerobic exercise), the comparison 
group (C) against which the population of interest (P) is 
compared (e.g., placebo, control, or usual care groups), and 
the outcome measures (O) (e.g., fasting blood glucose lev-
els). Together these variables are commonly referred to as 
the PICO (Population, Intervention, Comparator, and Out-
comes), and in addition to the type of study design, which is 
often limited to RCTs, the PICO elements collectively form 
the inclusion criteria.
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The exclusion criteria also must be defined. These, like 
the inclusion criteria, are at the scientist’s discretion but 
must be clearly stated and defined. For example, a study 
involving type 2 diabetes would exclude type 1 and gesta-
tional diabetes and would also exclude animal studies if we 
only want to include humans. And the age range might 
exclude studies of people under 18 years if the focus is upon 
adults)

To provide more perspective to the information pre-
sented in Box 1, the background to the question is an ongo-
ing debate as to whether exercise training can increase sur-
vival time in people with heart failure. It is known that those 
with heart failure have a high annual mortality rate (1). Until 
the 1980s the advice often provided to people with heart 
failure was for “bed rest” as physical stress was considered a 
risk (2). Early clinical trials in the 1980s and 1990s (3,4) 
quickly illustrated that exercise was actually beneficial in 
terms of improving cardiorespiratory fitness levels (peak 
Vo2). Later, the ExTraMATCH (5) study performed a meta-
analysis combining many of those early clinical trials that 
showed people with heart failure and higher peak Vo2values 
had longer survival times. Today peak Vo2is often used as a 
surrogate measure of survival time in people with heart fail-
ure, particularly those being evaluated for advanced treat-
ments (i.e., heart transplant or left ventricular assist device) 
(6).

The following is an illustration of the principles of 
meta-analysis using selected publications of RCTs of exer-
cise training in cardiac rehabilitation in those with heart 
failure. When data from all the included studies was pooled, 
the mean difference in peak Vo2was different in the high-
intensity versus low-intensity trained groups. The change in 
peak Vo2is presented in Figure 2, where the higher exercise 
intensity is associated with greater changes in peak Vo2than 

with lower intensity exercise (7). The meta-analysis, there-
fore, suggests that those people with heart failure undertak-
ing a cardiac rehabilitation program with an exercise compo-
nent that uses high-intensity activities are more likely to 
improve their fitness by a greater amount than with low-
intensity exercise training.

GROUP-LEVEL VERSUS INDIVIDUAL  
PATIENT-LEVEL META-ANALYSES

Note that meta-analyses are almost always based upon 
group-level data and not from individual subject-level data. 
Thus, the mean difference values for data are taken for the 
intervention group (e.g., high-intensity exercise group) and 
these are compared to mean values for the control group 
(e.g., low-intensity exercise group). This type of meta-
analysis is most commonly encountered in the published 
literature, and statisticians often refer to it as a group-level 
meta-analysis as opposed to an individual patient data meta-
analysis that requires included study authors to provide their 
original datasets with each patient’s individual data.

Typically results from a meta-analysis are not often 
presented in bar graph format. More often results of a group-
level meta-analysis are presented in a graph called a forest 
plot (Figure 3). Figure 4 explains the constituent components 
of the graphical component of the forest plot.

Figure 5 contains hypothetical data for the postexercise 
training program change in a blood marker of heart failure 
severity called brain natriuretic peptide (BNP), which is 
released when the myocardium is stretched. BNP is usually 
higher (which is unfavorable) in people who have heart fail-
ure versus those who do not. We can see below that BNP is 
changed by a mean value (difference) of −79.20 pg·mL−1 
(which is a favorable outcome) after exercise training in 
people with heart failure because the P value is less than 
0.05 (5% level of significance) that is traditionally used. The 

FIGURE 1. Summary of interrelationship between randomized 
controlled trials (RCTs), systematic review, and meta-analysis.

FIGURE 2. Histogram for change in peak Vo2 high versus low 
intensity exercise training in people with heart failure.

BOX 1. DEVELOPING A RESEARCH 
QUESTION USING PICO

The formulation of the research question usually uses 
the PICO format, for example;

Question:
Does exercise intensity influence the change in cardio-
respiratory fitness (Peak Vo2) in people with heart 
failure?

PICO:
Population: Heart failure
Intervention: Exercise (categorized in this case by dif-
ferent classifications of intensity)
Comparator: No exercise group receiving only usual 
care
Outcome(s): Post-training change in peak Vo2. Although 
we may wish to measure other outcomes (e.g., mortality 
and hospitalization), for this question the primary out-
come is pre-post training change in peak Vo2
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following paragraphs examine in detail the aspects of forest 
plot.

It is important to note that historically forest plots were 
designed to illustrate whether outcomes such as mortality 
and hospitalization were lower (therefore more favorable) in 
treated versus untreated patients. Most statistical software 
programs today use a default plot where lower values are 
considered better, therefore it is important to remember in 
many fields including kinesiology or exercise science that 
authors prefer that many outcomes have a higher value (e.g., 
peak Vo2 is better if higher). Note in this example though 
BNP is better if lower. The way authors most commonly 
adjust for having higher values as better by simply swapping 
the axes at the foot of the forest plot (favors exercise – favors 
control) when an outcome is better if higher. In Figure 3 the 
default (i.e., lower is better) occurs, and thus in this case the 
lower BNP values are better and there is no need to swap the 

“favors exercise favors control” axes, as would be done for a 
peak Vo2outcome measure because higher peak Vo2is better.

When examining the forest plot in Figure 5 the far right 
column denotes the statistical weighting (%) assigned to 
each study (e.g., Barnes is 13.82% in Figure 5). The study by 
Parkes has the highest weighting and thus influences the 
outcome of the meta-analysis the most of the 5 studies listed. 
The number of participants is 1, but not the only factor that 
determines weighting. Weighting is also partially related to 
study variability. So the larger the SD reported in the study, 
the lower the weighting that will be assigned. Although the 
effect of variance is not obvious in our figure, we can see the 
effect of the reported SDs has some bearing on weighting 
because the hypothetical study by Barnes 2012 has 41 (23 
exercise + 18 control) participants, yet it is weighted slightly 
lower (13.82% vs. 14.35%) than the study of Jones 2006 that 
only has 40 (21 exercise + 19 control) participants. The 

FIGURE 3. A traditional forest plot with constituent components color-coded. Change in 10m WT (s) after exercise in pwMS. A, aerobic; 
Comb, combined aerobic and resistance training; C-PRT, cycling and progressive resistance training; H, home exercise; IV, inverse 
variance; R, resistance training; Y, yoga.

FIGURE 4. Constituent components of the graphical component of the forest plot.
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lower weighting of Barnes is partly because of the higher SD 
of 191 for the control group.

The next step in the analysis is to assess the mean differ-
ence values. These are the differences between mean values 
for the exercise and control groups. In the forest plot example 
for Barnes, the mean difference is calculated as 187 − 223 = 
−36. This is done for all included studies. Note in the exam-
ple in Figure 5 that only the Jones study had a mean differ-
ence in the opposite (higher BNP in the exercise group) 
resulting in a difference in mean values of 43.

Heterogeneity is the variability in outcomes beyond 
what is expected due to measurement error. In this case the 
heterogeneity, expressed as I2% in the bottom left of Figure 
5, is relatively high at 68.6%. This means that overall, the 
studies are inherently different from one another. Although 
subjective, some authors will not pool data (the process of 
conducting meta-analyses and developing forest plots) if 
heterogeneity is too high, with 75% often considered the 
threshold. In this example the P value for the test of 

heterogeneity (not the effect size for the outcome measure) 
is P = 0.01, which means there is statistically significant 
heterogeneity between studies. This heterogeneity probably 
stems from the large difference in SD values (range 27 to 
191) across the 5 studies.

Recall that the significance test result for the outcome 
measure is P < 0.01. Without knowing the P value, the reader 
can look at the forest plot and see that the effect size or point 
estimate for the mean difference is statistically significant 
because the horizontal component of the green diamond 
(corresponding to the 95% confidence interval of the meta-
analysis) does not touch or cross the line of no effect (i.e., 
vertical line going through value zero). If the green diamond 
crossed the line of no effect, then this would indicate the 
effect is not statistically significant and the P value would be 
greater than 0.05 in this case.

At the bottom of the forest plot there is a notation that a 
random effects model has been used, in this case specifically 
the Der Simonian-Laird random effects model. There are 

FIGURE 5. Random effects forest plot of postexercise training change in brain natriuretic peptide in people with heart failure.

FIGURE 6. Fixed effects model forest plot of postexercise training change in brain natriuretic peptide in people with heart failure.
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many different statistical tests that can be selected and typi-
cally available as a default setting of common software 
packages. Each are valid and have various specific attributes. 
Readers who wish to learn more can obtain information 
from the following reference (8). The Der Simonian-Laird 
model is most used by Cochrane systematic review authors

FIXED VERSUS RANDOM EFFECTS
Most statistical software offers a choice of using either a 
random or fixed effects model when generating forest 
plots. There are many opinions on the choice of model, 
but generally it is agreed that a random effects model 
(Figure 5) is most conservative. So, a fixed effects model 
(Figure 6) is often avoided in meta-analysis as it is con-
sidered less conservative than a random effects model and 
therefore has a greater chance of achieving statistical 
significance and thus an increased risk of a type 1 error 
(i.e., incorrect rejection of null hypothesis). This is most 
simply explained because the 95% confidence interval is 

narrow and therefore less likely to cross the black vertical 
line of no effect.

SUMMARY
Meta-analysis is a key tool medical and health practitioners 
use to clarify whether a treatment or an approach to deliver-
ing a treatment is effective or not in the presence of conflict-
ing data from different publications. In Part II the primer will 
address the issue of publication bias using funnel plots to 
identify if nonsignificant studies exist that have not been 
published, because they produced “negative findings”. In 
addition, sub-analyses and meta-regression will be examined 
as two of the most used techniques used to identify if par-
ticular study characteristics (e.g., intervention type or vol-
ume) lead to more favorable or worse changes in the clinical 
outcomes of interest. Finally, in Part II we will introduce 
readers to the more sophisticated approach to meta-analysis 
that uses individual patient data and not group-level “aver-
age” data, as Part I was limited to the latter.
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