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REVIEWS

INTRODUCTION
Exercise training alone or as core component of cardiac reha-
bilitation (CR) programs is endowed with a wide array of ben-
eficial effects including mortality reduction (91), prevention of 
cardiac remodelling (41,44), and improvement of cardiovascu-
lar functional capacity and myocardial perfusion (36,37,45,48) 
in patients with coronary artery disease (CAD). The improve-
ment of endothelial function (113), the anti-inflammatory prop-
erties (18,38), the improvement of neurohormonal and auto-
nomic balance (42,43,46,47,108), and the reduction of oxidative 
stress (92) might represent some of the putative mechanisms by 
which exercise training exerts its beneficial effects. However, 
the physiological underpinnings of the positive impact of exer-
cise training are not fully understood.

CAD remains the main cause of mortality in developed 
countries (33,125). In the last decades the understanding of 
the pathogenesis of atherosclerosis has dramatically changed. 
Atherosclerosis is considered a dynamic and gradual process 
of chronic low-grade inflammation and endothelial dysfunc-
tion involving the cellular infiltration of several cell types, 
including monocytes and T lymphocytes (61). Monocytes 
interact with the endothelial layer, attach firmly to the endo-
thelium, and then migrate into the subendothelial space to 
differentiate into macrophages. Macrophages release cyto-
kines and can also become foam cells by taking up lipids. 
Macrophages and foam cells secrete growth factors; this leads 
to cell proliferation and matrix production. Thus, macro-
phages and foam cells both contribute to lesion growth and 
may contribute to instability and thrombotic events (77,94). 

This paper reviews the effects of exercise training on 
markers of inflammation, cellular adhesion molecules, endo-
thelial progenitor cells, microRNAs, endothelial function, 
and oxidative stress in patients with CAD.

EFFECTS OF EXERCISE 
TRAINING ON CYTOKINES

The pathogenesis of atherosclerosis involves several cyto-
kines belonging to the interleukin group (i.e., IL-1, IL-6, 
IL-8, IL-10) and macrophage associated cytokines such as 
tumor necrosis factor-α (TNF-α), interferon (IFN)-γ and 
colony stimulating factors (68). Cytokines can be catego-
rized as pro-inflammatory (pro-atherogenic) and anti-
inflammatory (anti-atherogenic). Both pro-inflammatory 
and anti-inflammatory cytokines play a key role in chronic 
vascular inflammation, and their balance seems paramount 
to the progression of atherosclerotic disease (68). In brief, 
the pro-inflammatory cytokines exert several biological 
functions, including: (a) the induction of other proinflamma-
tory cytokines and chemokines; (b) the expression of adhe-
sion molecules on endothelial cells; (c) the stimulation of 
cell proliferation and differentiation; (d) the release of 
matrix-degrading enzymes; and (e) the regulation of acute-
phase reaction. On the other hand, anti-inflammatory cyto-
kines exhibit atheroprotective properties, inhibiting a wide 
range of immune and inflammatory responses, including the 
inhibition of pro-inflammatory cytokines.

The anti-inflammatory effect of exercise in patients with 
CAD has been assessed through the measurement of circulat-
ing levels of the pro-inflammatory cytokines IL-1, IL-6, IL-8, 
TNF-α, and IFN-γ, and of the anti-inflammatory cytokine 
IL-10 (53,67,84,87,106,121). There is moderate evidence that 
exercise training reduces the levels of IL-6 (16,53,103,105,117). 
These studies indicate that exercise training reduces vascular 
wall inflammation, by increasing the levels of IL-10 
(53,106,109) and reducing the levels of some pro-inflamma-
tory cytokines (53,67,121,84,109) (Table 1).
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TABLE 1. The effect of exercise training on inflammatory biomarkers of atherosclerosis among patients with coronary artery disease.

First Author,
Year (reference)

n RCT Follow-
Up

Intervention CRP TNF-α IFN-γ IL-6

Smith et al.,
1999 (109)

43 No 6 mo Aerobic and resistance exercise training: subjects 
averaged 70 min per session, 2 d·wk-1

↔ ↓ ↓

Milani et al.,
2004 (81)

277 No 12 wk Aerobic exercise training: 3 d·wk-1 ↓

Goldhammer et al.,
2005 (52)

28 No 12 wk Aerobic exercise training: 45 min; 3 d·wk-1 ↓

Caulin-Glaser et al.,
2005 (14)

172 No 12 wk Aerobic exercise training: 3 d·wk-1 ↓

Cesari et al.,
2009 (16)

86 No 2 wk Aerobic exercise training: 6 d·wk-1 ↓

Huffman et al.,
2006 (63)

193 Yes 6 mo Aerobic exercise training: three exercise groups 
based on exercise volume and intensity

↔

Lavie et al.,
2006 (73)

365 No 12 wk Aerobic exercise training: 30 to 40 min, 3 d·wk-1 ↓

Niessner et al.,
2006 (84)

32 No 3 mo Aerobic exercise training: ≥30 min, ≥3 d·wk-1 ↔ ↔

Schumacher et al.,
2006 (105)

197 Yes 6 mo Lifestyle intervention with aerobic exercise 
training: 45 min of supervised exercise, 2 d·wk-1 
for 15 wk, plus home-based exercise

↓a ↓a

Shin et al.,
2006 (106)

39 No 14 wk Three study groups (exercise, exercise + statins, 
statins only)
Aerobic exercise training: 30 to 40 min, 3 d·wk-1

↓b

Goldhammer et al.,
2007 (53)

28 No 3 mo Aerobic exercise training: 45 min, 3 d·wk-1 ↓ ↓ ↓

Kim et al.,
2008 (67)

39 No 14 wk Aerobic exercise training: 30 to 40 min, 3 d·wk-1 ↓ ↓ ↓

Pluss et al.,
2008 (90)

224 Yes 12 wk Two study groups (standard and expanded 
exercise program)
Aerobic exercise training: 60 min, 2 d·wk-1

↓c

Walther et al.,
2008 (121)

66 Yes 24 mo Aerobic exercise training: 20 to 60 min, 7 d·wk-1 ↓ ↓

Lara-Fernandez et al.,
2011 (71)

34 Yes 16 wk Aerobic (40 min) and resistance (10 min) exercise 
training: 3 d·wk-1

↓

CRP = high sensitivity C-reactive protein; IFN-γ = interferon-γ; IL-6 = Interleukin-6; RCT = randomized controlled trial; TNF-α = tumor 
necrosis factor-α.
adecrease was also observed in the control group
bsignificant for exercise plus statin group only
csignificant for both groups

EFFECTS OF EXERCISE 
TRAINING ON C-REACTIVE PROTEIN

C-reactive protein (CRP) is an acute phase protein largely 
produced by the liver in response to inflammatory cytokines, 
primarily IL-6, and, to a lesser extent, IL-1 and TNF-α (13). 
CRP is an important marker of subclinical chronic vascular 
inflammation, being considered a strong predictor of cardio-
vascular events (115). CRP is a pro-inflammatory mediator 
that contributes to the development and progression of athero-
sclerosis through: (a) the increase of low-density lipoprotein 
(LDL) uptake by macrophages (128); (b) the mediation of 
intercellular adhesion molecule-1 (ICAM-1) and soluble 

vascular cell adhesion molecule-1 (VCAM-1) expression and 
the mediation of monocyte chemotactic protein-1 induction 
(88,89); (c) the induction of tissue factor production by mono-
cytes (15); (d) the induction of plasminogen activator inhibi-
tor-1 (PAI-1) expression (28); and (e) the decrease of the pro-
duction of nitric oxide (NO) by endothelial cells (118).

Previous studies investigated the effects of exercise 
training on CRP and found a significant reduction in levels 
after a 3 mo intervention in patients with CAD with and 
without metabolic syndrome, independent of weight and 
statin therapy (14,80,81). Moreover, an exercise-induced 
reduction of CRP levels independent of weight-loss and 
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statins has been reported (53,90,121). Walther et al. (121) 
randomized 101 patients with stable CAD to either percuta-
neous intervention with stent or aerobic exercise training. In 
a subgroup of 66 patients, after 24 mo of training, CRP levels 
were reduced by 41%, whereas no change was observed in 
the percutaneous intervention group. Of note, the effects of 
exercise were independent of statin therapy.

A number of studies have examined the anti-inflamma-
tory potential of exercise in patients with CAD through the 
assessment of circulating CRP levels (Table 1). Taken 
together, data from these studies indicate that exercise train-
ing reduces the circulating levels of CRP. Several prospec-
tive studies examining the influence of exercise training 
alone or incorporated in multi-disciplinary cardiac rehabili-
tation programs (exercise training program, dietary and 
lifestyle counseling, psychological support) on markers of 
inflammation, have suggested an anti-inflammatory effect of 
chronic exercise (6,14,16,33,46,52,53,60–63,67,68,71,73, 
76,77,80,84,86,87,90,92–94,101,103,105,107–109,117,121, 
125) (Table 1). As pointed out in Table 1, the majority of 
evidence suggests that exercise training is related to improve-
ment in low-grade inflammatory markers as expressed by 
circulating CRP levels. However, in their systematic review, 
Kasapis et al. (65) reported conflicting results between stud-
ies. This discrepancy may be due to differences in subject 
characteristics and sample size, to the timing of the blood 
samples taken, and the type, intensity, and duration of the 
exercise intervention. The duration of the exercise interven-
tions seems to be crucial, since the majority of studies show 
improvements in inflammatory markers with at least 12 wk 
of exercise intervention. Several potential mechanisms are 
putatively involved in decreasing CRP induced by exercise 
training alone or as a core component of a multi-disciplinary 
cardiac rehabilitation program; all of them are closely related 
to the decrease of cytokine production, namely IL-6, IL-1, 
and TNF-α (74).

The improvement of central obesity, with a consequent 
decrease in the adipocytes production of inflammatory cyto-
kines, is one of the main determinants. It is well documented 
that central obesity is associated with increased CRP levels 
(78,61), possibly due to increased adipocyte-induced pro-
duction of the inflammatory cytokines IL-6 and TNF-α (49). 
Accordingly, exercise could mitigate inflammation by 
reducing body weight. However, it has been reported that 
exercise training reduces the circulating levels of IL-6, IL-1, 
and CRP levels independent of changes in body mass 
(53,121), suggesting that other factors may contribute to the 
exercise-related anti-inflammatory effect. The decreased 
production of cytokines in others sites beyond adipose tis-
sue, such as skeletal muscle and mononuclear cells could be 
pointed out as another possible mechanism mediating the 
anti-inflammatory effect of exercise. In patients with heart 
failure, 6 mo of exercise training reduced the skeletal muscle 
TNF-α, IL-1β, and IL-6 expression. However, the serum 
levels of the previously mentioned parameters remained 
unaffected, raising the question of whether this local change 
bears systemic pathophysiological reverberations (56). 

EFFECTS OF EXERCISE TRAINING 
ON ENDOTHELIAL FUNCTION

The integrity of the endothelium is crucial for preserving 
vascular homeostasis (1,11). Endothelial function has exten-
sively been assessed as endothelium-dependent vasomotion, 
at least in part based on the assumption that impaired endo-
thelium-dependent vasodilation also reflects the alteration of 
other important functions of the endothelium (27). Endothe-
lial dysfunction can be defined as an alteration in the basal 
endothelial phenotype (vasorelaxant, anticoagulant, anti-
platelet, and profibrinolytic), to one that is vasoconstrictive, 
procoagulant, platelet-activating, and antifibrinolytic (3). 
The dysfunctional endothelial cells release lower levels of 
nitric oxide (NO), prostacyclin, thrombomodulin, and tissue 
plasminogen activator and meanwhile increase levels of 
endothelin-1, angiotensin II, PAI-1, and von Willebrand fac-
tor (3). Tissue factor X, which is not present on the func-
tional endothelial cell surface, becomes expressed as a result 
of thrombin production. Thrombin is activated through the 
binding of activated factor V to activated factor X on the 
surface of the endothelial cell (3). 

NO is generated by the oxidation of L-arginine into 
L-citruline by the action of nitric oxide synthase (NOS). NO 
plays a pivotal role in the regulation of vascular tone, the inhi-
bition of platelet aggregation, and the control of the cytokine 
adhesion to the vessel wall (20). In atherosclerotic vessels, the 
reduction of NO bioavailability is associated with vasocon-
striction, platelet adherence and aggregation, leukocyte adher-
ence to the endothelium, and increased proliferation of vascu-
lar smooth muscle cells (96). The degradation of NO through 
the interaction with reactive oxygen species (ROS) is consid-
ered the main pathway responsible for the decrease of NO 
bioavailability (57). In addition, atherosclerosis also promotes 
the downregulation of endothelial NOS (eNOS) with a conse-
quent decrease in the production of NO.

Several studies explored NO bioavailability indirectly 
by measuring the degree of endothelium-dependent vasodi-
latation (51,59). Those studies consistently showed that 
exercise training, particularly aerobic exercise, promotes 
favorable adaptations in endothelial cell function with evi-
dent clinical benefits. Therefore, regular exercise is viewed 
as a non-pharmacological therapeutic modality that enhances 
endothelial function in patients with established CAD (58) 
and heart failure (9). In brief, the exercise-induced increase 
of NO bioavailability could be the result of the increased 
activity/expression of eNOS, and/or the diminished degrada-
tion of NO as a result of the reduced interaction with ROS. 

Hambrecht et al. (59) demonstrated the positive effects 
of exercise training on vascular function and eNOS expres-
sion in the human vascular system, showing a 2-fold increase 
in eNOS mRNA expression and a 3.2-fold increase in the 
phosphorylation of eNOS on serine 1177 residue after 4 wk 
of regular exercise training in patients with CAD (59). These 
changes led to a rise in the enzymatic activity of eNOS and 
consequently to an enhanced NO production (59). Further-
more, regular exercise tends to increase antioxidant defenses 
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TABLE 2. The effect of exercise training on chemokines and adhesion molecules among patients with coronary artery disease.

First Author,
Year (reference)

n RCT Follow-
Up

Intervention IL-8 MCP-1 sVCAM-1 sICAM-1

Adamopoulos et al.,
2001 (1)

12 Yes 3 mo Aerobic exercise training: 30 min, 5 d·wk-1 ↓ ↓ ↓

Niesser et al.,
2006 (84)

32 No 3 mo Aerobic exercise training: ≥30 min, ≥3 d·wk-1 ↓ ↓

Schumacher et al.,
2006 (105)

197 Yes 6 mo Lifestyle intervention with aerobic exercise 
training: 45 min of supervised exercise, 2 d·wk-1 
for 15 wk, plus home-based exercise

↔ ↔ ↔ ↔

Astengo et al.,
2010 (6)

56 Yes 8 mo Aerobic exercise training: ≥30 min, 5 d·wk-1 ↔

Lara-Fernandez et al.,
2011 (71)

34 Yes 16 wk Aerobic (40 min) and resistance (10 min) 
exercise training: 3 d·wk-1

↔

IL-8 = Interleukin-8; RCT = randomized controlled trial; sICAM-1 = soluble intercellular adhesion molecule-1; sVCAM-1 = soluble 
vascular cell adhesion molecule-1

by enhancing the activity of superoxide dismutase and gluta-
thione peroxidase and as a result reducing NO degradation 
(55). The increase of antioxidant defenses could also con-
tribute to attenuating the formation of foam cells and vascu-
lar inflammation through the reduction of LDL oxidation 
(55). In fact, lipid oxidation as the result of LDL exposure to 
the oxidative waste of intima layer seems to be essential for 
the foam cells formation, as native LDL is rapidly taken up 
by macrophages.

In summary, regular exercise promotes the acute 
increase of blood flow and shear stress and, in turn, improves 
the NO bioavailability, hence increasing endothelium-
dependent vasodilatation. This improvement may represent 
the principal pathophysiological mechanism underpinning 
the observed reduction of myocardial ischemia through reg-
ular exercise (51,59). Interestingly, it should be noted that 
exercise intensity seems to be a crucial variable in this vas-
cular response. In fact, moderate-intensity aerobic exercise 
increases endothelium-dependent vasodilatation in subjects 
with impaired endothelial function (55). Nevertheless, recent 
evidence in patients with chronic heart failure suggests that 
high-intensity aerobic interval exercise may be better than 
moderate-intensity aerobic exercise to increase endothelial 
function and NO availability (124).

EFFECTS OF EXERCISE TRAINING ON 
CELLULAR ADHESION MOLECULES

Under physiologic conditions, the endothelial cell does not 
express molecules that induce the adhesion of circulating 
leukocytes. However, the activation of the endothelial cell 
by cytokines, oxidized LDL, and ROS induce the endothe-
lial expression of cellular adhesion molecules—such as 
ICAM-1, VCAM-1, E-selectin, and P-selectin—that are 
crucial to the recruitment of inflammatory cells to the vessel 
wall (35). These molecules can be measured in the circula-
tion as soluble adhesion molecules since they are released in 
soluble form into the bloodstream from the proteolytic 
cleavage of membrane-bound molecules. Therefore, these 

molecules are considered to be important markers of endo-
thelial cell activation and inflammation (35). Several studies 
explored the effect of exercise training on adhesion mole-
cules (1,62,71,86,93,98,101,105). Exercise training exerts a 
positive impact on circulating cellular adhesion molecules 
(Table 2). There is moderate evidence that aerobic exercise 
will reduce VCAM-1, as supported by two studies (1,105). 
However, the study by Lara-Fernandez et al. (71) did not 
show any effect on VCAM-1 by aerobic exercise in patients 
with CAD (Table 2). There is substantial evidence that aero-
bic exercise decreases ICAM-1 (1,105) (Table 2). It is still a 
matter of debate whether exercise training decreases the 
levels of E-selectin; one study of resistance training showed 
no effect (86). Similarly, for P-selectin, insufficient evidence 
exists, with conflicting results.

In subjects at risk of coronary events, two weeks of exer-
cise training reduced circulating levels of soluble ICAM-1 
(123). Likewise, in patients with heart failure, exercise train-
ing decreased the circulating levels of soluble ICAM-1 and 
VCAM-1 (1).This positive impact of exercise on circulating 
cellular adhesion molecules could be related to changes in the 
transcriptional regulation of these molecules induced by shear 
stress (4). Exercise training might also have indirect favorable 
effects throughout the reduction of agonists of cellular adhe-
sion molecule synthesis such as pro-inflammatory cytokines 
(67), ROS (75), and, thus, the oxidation of LDL (9). There-
fore, by reducing soluble adhesion molecules, which may 
represent the interaction between activated monocytes/macro-
phages and endothelial cells, exercise training might be con-
sidered an effective non-pharmacological intervention to 
reduce endothelial adhesiveness. 

EFFECTS OF EXERCISE TRAINING ON 
ENDOTHELIAL PROGENITOR CELLS

Endothelial function is a balance between the level of aggres-
sion and the vascular capacity to regenerate after injury, which 
is closely related to the number and function of endothelial-
progenitor cells (EPC) (30). EPCs are circulating bone 
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marrow-derived stem cells that can differentiate into mature 
endothelial cells (30). If required, EPCs are mobilized from 
bone marrow and released into peripheral circulation. This 
process is regulated by several growth factors, enzymes, 
ligands, and cell surface receptors, as well as by the direct 
effect of increased blood flow within bone marrow (30). 
Exercise training seems to be the most effective intervention 
in stimulating EPC production (30). Exercise training has 
been reported to chronically increase the number of circulat-
ing EPCs both in healthy subjects (72) and patients with 
CAD (84,85). Laufs et al. (72) reported an average increase 
of about 300% in the circulating EPCs after 4 wk of regular 
exercise training. Such an increase could be partially 
explained by the stimulation of bone marrow as a result of 
local increase in the bioavailability of NO (72), in turn 
favoring the mobilization of EPCs (2,72,112). In addition to 
the upregulation of EPC generation, exercise may increase 
the number of circulating EPCs by decreasing the rate of 
EPC apoptosis (83). This decrease seems to be mediated by 
the inhibition of Caspase-3, an important pro-apoptotic 
enzyme (79). The favorable impact of exercise training on 
the survival, differentiation, and function of EPCs may also 
be indirectly ascribed to the reduction of circulating levels of 
CRP (104,119). Independent of the underlying mechanisms, 
the current knowledge supports the view that exercise is an 
effective tool to enhance endothelial regenerative capacity.

EFFECTS OF EXERCISE 
TRAINING ON MICRO-RNAS

Micro-RNAs (miRNAs) have emerged as key modulators of 
mammalian cardiovascular development and disease (114). 
Individual miRNAs modulate the expression of collections 
of messenger RNA targets that often have related functions, 
thereby regulating complex biological processes (114). 
Heart failure and several cardiovascular diseases are associ-
ated with a specific signature pattern of miRNAs (66,116). 
Several miRNAs have been shown to modulate biological 
pathways in skeletal and cardiac muscle hypertrophy and 
metabolism (26,66,97,116). 

Aerobic and resistance exercise interventions alter the 
global transcriptional miRNAs pattern of these tissues 
(26,29,66,97,99,116). These changes in miRNAs expression 
provide numerous novel explanations for the effects of train-
ing on metabolism. For instance, an acute aerobic exercise 
intervention downregulates miR-23a expression in skeletal 
muscle in both humans and mice (85,99). miR-23a is verified 
as a direct target for PGC-1a, a regulator of mitochondrial 
biogenesis (85). The exercise-induced alteration in miRNAs 
expression could be more likely considered a muscular adap-
tation mechanism in response to endurance training. 

Few studies have shown that increased physical activity 
is associated with altered levels of circulating miRNAs. Bag-
gish et al. (7) demonstrated altered expression of select circu-
lating miRNAs in response to both acute and chronic exercise 
interventions. Baggish et al. (7) investigated miRNAs 
involved in angiogenesis (miR-20a, miR-210, miR-221, 

miR-222, miR-328), inflammation (miR-21, miR-146a), skel-
etal and cardiac muscle contractility (miR-21, miR-133a), and 
hypoxia/ischemia adaptation (miR-21, miR-146a, and miR-
210). They found that distinct patterns of miRNAs response to 
exercise were observed and adhered to four major profiles: (1) 
miRNAs upregulated by acute exercise before and after sus-
tained training (miR-146a and miR-222), (2) miRNAs 
responsive to acute exercise before but not after sustained 
training (miR-21 and miR-221), (3) miRNAs responsive only 
to sustained training (miR-20a), and (4) non-responsive miR-
NAs (miR-133a, miR-210, miR-328). These findings thus 
suggest that the selected circulating miRNAs have distinct 
expression profiles in response to these interventions (12). 
Another study has demonstrated that low maximal aerobic 
oxygen consumption is associated with high expression levels 
of three different circulating miRNAs (25).

There are limited studies that report the involvement of 
miRNAs in cardiovascular adaptive response to exercise 
training (31,34,110,122). In one study, swim training in rats 
increased cardiac expression of miR-126 expression, which is 
regarded as an endothelial specific miRNA supporting angio-
genesis by directly repressing two negative regulators of vas-
cular endothelial growth factor (102). Another study reported 
that miR-29 is involved in the improvement of ventricular 
compliance and is promoted by aerobic exercise training due 
to a modulation of decreased collagen synthesis in cardiac 
fibroblasts (110). Regarding the regulation of eNOS activity 
by increased shear stress, cell-culture experiments suggested 
an involvement of miRNA-21, where overexpression of the 
former resulted in an activation of eNOS and a 3.7-fold 
increased NO production, yet inhibition of miRNA-21 abol-
ished the shear-induced activation of eNOS (122).

EFFECTS OF EXERCISE 
TRAINING ON OXIDATIVE STRESS

Several studies have shown ROS activation in the cardiovas-
cular system in response to different stressors (100), and that 
antioxidants and ROS defense pathways can improve ROS-
mediated cardiac abnormalities (50). ROS have been linked 
to pathologic processes such as cardiac hypertrophy (83) 
cardiomyocyte apoptosis (120), ischemia-reperfusion (129), 
and heart failure (69). ROS overproduction also occurs in 
response to several stimuli, including chemicals, drugs, pol-
lutants, high-caloric diets, and exercise (10). Moreover, 
oxidative stress results in abnormalities in mitochondrial 
function, calcium handling, electrolytes alterations, hor-
mones, and cardioprotective signaling each have been pro-
posed as potentially implicated in the aging process (21). 

It is well known that physical exercise increases ROS, 
eventually causing a perturbation of homeostasis that is 
dependent on training specificity (19) and workload (24); 
however, in turn, it is also able to counterbalance the delete-
rious effects of ROS by activation of several antioxidant 
systems, such as super oxide dismutases (SODs), heat shock 
proteins, and catalase (23). The mechanisms by which ROS 
mediate these different biologic responses are not fully 
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(5,39,40,54,70,111). Goldstein et al. (54) reported high 
serum HMGB1 levels in nine patients with acute coronary 
syndrome compared to healthy volunteers. In a pre-clinical 
study conducted by Andrassy et al. (5), the investigators 
reveal that they have unpublished data showing elevated 
plasma HMGB1 levels in patients on admission for a ST-
elevation myocardial infarction. In the recent study by 
Kohno et al. (70), patients with acute myocardial infarction 
showed transiently increased serum HMGB1 levels within 
the first 7 d after admission with a peak value after 12 h. The 
same authors reported an association between elevated 
HMGB1 levels and the risk of cardiac rupture and in-hospital 
death (70). However, these results were only based on data 
from three and two patients, respectively (70). Cirillo et al. 
(18) showed that higher HMGB1 levels in patients with 
acute myocardial infarction was significantly associated 
with cardiopulmonary and echocardiographic outcomes 
such as peak oxygen consumption, left ventricular end-dia-
stolic volume, and ejection fraction. Moreover, the same 
authors showed a significant association between increased 
circulating levels of HMGB1 and autonomic dysfunction 
(39). In a recent study, Sorensen et al. (111) reported elevated 
circulating levels of HMGB1 in patients with an ST-eleva-
tion myocardial infarction when compared with controls and 
a significant association between high HMGB1 levels and 
mortality rate in these patients.

Only one study explored the effects of exercise training 
on HMGB1 levels in patients following acute myocardial 
infarction (18,40). This randomized study showed that after 6 
mo, HMGB1 levels were significantly lower in exercise 
trained patients compared to controls (11.7 ± 7.0 vs. 20.5 ± 
15.6 ng·ml-1, p = 0.0027, respectively). In trained patients, 
decreased HMGB1 levels were significantly associated with 
significant improvements in peak oxygen consumption, heart 
rate recovery, reduced left ventricular end-diastolic volume, 
and wall motion score index. These data highlighted the rele-
vance of inflammatory mediators in the evolution of myocar-
dial structure and function after acute myocardial infarction 
and their modulation exerted by exercise training. It could be 
hypothesized that HMGB1 may contribute to the pathophysi-
ological understanding of adverse remodelling leading to 
heart failure by unmasking different pro-inflammatory path-
ways that may be involved in ischemic heart disease. Further 
studies are needed in order to understand the underlying 
mechanism(s) as well as the potential effects of drug therapy.

CLINICAL IMPLICATIONS
Exercise training is an effective therapeutic modality for 
improving vascular wall inflammation and endothelial dys-
function in the atherosclerotic process. The positive effects 
of exercise training can be explained by several mechanisms 
including: the increase of the bioavailability of NO and anti-
oxidant defenses, the decrease in pro-inflammatory cyto-
kines production by the adipose tissue, skeletal muscles, 
endothelial cells, blood mononuclear cells, and the increase 
of the regenerative capacity of endothelium. However, these 
mechanisms do not fully account for all pathways by which 

understood, but in many cases it involves the activation of 
specific redox-sensitive signaling molecules. It has been 
demonstrated that sirtuins, NAD+/NADH deacetylases, are 
involved in modulating the cellular stress response directly 
by deacetylation of factors also implicated in endothelial 
function control, and in vascular biology, regulating aspects 
of age-dependent atherosclerosis (22). Exercise training, 
although it increases ROS, is able to induce an increase in 
sirtuin-1 activity that, in turn, modulates the antioxidant cel-
lular response (32).

EFFECTS OF EXERCISE TRAINING 
ON HIGH MOBILITY GROUP BOX-1

High mobility group box-1 (HMGB1) is a non-histone DNA 
binding protein involved in maintenance of nucleosome 
structure and active in DNA recombination, replication, and 
gene transcription (126). HMGB1 could be included in the 
family of the damage-associated molecular pattern mole-
cules (DAMPs), known also as alarmins. The DAMPs fam-
ily includes several molecules, different in their structure 
and sequence, released from necrotic cells, which are able to 
activate the innate immune system (95). HMGB1, besides 
being released from necrotic cells, can be secreted in extra-
cellular medium by activated monocytes via a non-classical, 
vesicle-mediated secretory pathway in response to pro-
inflammatory stimuli (e.g., INF-γ, LPS, TNF-α) (18). Of 
note, the HMGB1 secreted by activated monocytes has an 
acetylated tail that is not present when this protein is pas-
sively released by necrotic cells, suggesting that acetylation 
might play a role in modulating HMGB1 transport outside 
activated cells (102). Moreover, HMGB1 can be released 
from apoptotic cells (8). This apoptotic-derived HMGB1 is 
oxidized on Cys106 in a process in which Caspase activity 
and mitochondrial ROS are actively involved. Therefore, 
these data suggest that, in the pathophysiology of inflamma-
tion, HMGB1 might exert its effects as an early initiator 
(passive release from necrotic cells) and as a late promoter 
(active late release from macrophages as well as passive 
release) of inflammation (18). 

HMGB1 has been found in atherosclerotic lesions, 
where it is released by activated macrophages (64) and, in 
turn, induces expression of other inflammatory cytokines 
(64), which are able to amplify macrophages recruitment 
starting a vicious circle (18). It has been suggested that this 
inflammatory cytokine-HMGB1 cycle sustains inflammation 
and generates a chronic inflammatory state in atherosclerotic 
lesions (64). HMGB1 might be involved in plaque growth, 
because it triggers smooth muscle cell migration and prolif-
eration. Moreover, HMGB1 might promote progression of 
atherosclerosis by stimulating migration of macrophages 
and activation/maturation of dendritic cells (18). HMGB1 
stimulates activation of endothelial cells because it upregu-
lates expression of adhesion molecules (ICAM-1, VCAM-1, 
and E-selectin) (82).

Few clinical studies have been published on the poten-
tial association between myocardial ischemia and HMGB1 
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