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INTRODUCTION

To a large extent, the amount of useful information that can 
be extracted from research data is a function of the statistical 
methods used in analyzing it. The correct analysis of data 
has its foundation in the design phase of a research project, 
where proper estimation of sample size is essential. Heath 
(1) discusses epidemiological considerations in exercise 
physiology research and describes many common research 
designs, their strengths, and their limitations.

This paper is the first of a two-part series on introduc-
tory biostatistical concepts. This first paper reviews design 
considerations that are important to sound data analysis, 
with an emphasis on the role of randomization, power, and 
sample size calculations. Basic components of statistical 
inference, including the issue of multiple comparisons, are 
also presented.

STUDY DESIGN

Biostatisticians provide important help with the design and 
implementation of a study. Specifically, while the researcher 
provides the impetus for the entire research process, the 

biostatistician helps ensure that the question asked has a 
good chance of being answered, given the proposed study 
design.

The randomized clinical trial (RCT) is considered the 
gold standard for medical research. However, cross-sec-
tional, case-control, prospective or retrospective cohort, and 
intervention studies also play a role in research (1). The 
study questions or aims often dictate the design of the study 
or, conversely, due to resource or ethical considerations, the 
design of the study may dictate which research questions can 
be answered. Heath (1) has described four of these design 
types. The key characteristics of all six common study 
designs (2-4) are highlighted in Table 1.

Briefly, cross-sectional studies are often the easiest to 
implement, are helpful in obtaining estimates of preva-
lence rates of disease among different populations, and 
may be the first step in exploring the disease process. A 
case-control design generally cannot address questions of 
incidence or prevalence. Instead, it is commonly used 
when an association with disease is uncertain or the dis-
ease is rare. A prospective cohort study is a longitudinal 
study in which the researcher observes characteristics of a 
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cohort of people over time. However, since a prospective 
cohort study is observational rather than experimental, it 
(like cross-sectional or case-control trials) cannot prove a 
causal relationship.

A retrospective cohort study differs from the prospec-
tive cohort in that the outcome of interest has already 
occurred. The retrospective cohort study can usually be 
conducted more quickly and cost-effectively than the pro-
spective counterpart, but it has more disadvantages. In par-
ticular, retrospective studies are often dependent on data 
previously collected for other purposes and, as such, may 
not include all factors of interest; these studies may be 
incomplete or have inconsistent information for some of the 
subjects (4).

Intervention studies or clinical trials without a com-
parison group are useful as pilot studies or for obtaining 
descriptive data. Their advantage is that an intervention is 
given to a set of individuals, thus making it plausible to 
examine causality. However, due to the many possible 
biases in this type of study, causality can rarely be con-
cluded with certainty. Hill (5) lists nine criteria for assess-
ing causality that could apply to this type of design. Unfor-
tunately, even Hill concludes that support for all nine may 
not “bring indisputable evidence for or against the cause-
and effect hypothesis” (5). Intervention studies may be an 
informative and affordable step to take prior to full-scale 
investment in an RCT.

The missing ingredients from the intervention study 
design are a control/comparison group, along with the 
important benefits that randomization provides. With a 

sufficient sample size, randomization will protect against the 
bias that can occur if anyone consciously or unconsciously 
assigns subjects with a better prognosis to the intervention 
group they feel will be superior. When feasible, proper ran-
domization methods will blind treatment assignment to 
anyone involved in the selection or allocation process. Non-
randomized trials are always open to the suspicion of inves-
tigator or subject selection bias. The other benefit of ran-
domization is that when the sample size is sufficiently large, 
known and unknown factors that may influence outcome 
(i.e., possible confounders) will be equally distributed 
among the study groups. While it may be possible to adjust 
for known confounders in most design types, only a random-
ized trial can fully control unknown confounders.

An RCT uses prospective data collection, includes a 
randomized control group, and can prove causation. Since 
randomization can ensure that groups are comparable prior 
to the intervention, effects can be cleanly attributed to the 
intervention. It is for reasons such as these that the RCT is 
considered the gold standard of research design (6).

SAMPLE SIZE AND POWER

An important consideration in designing a study is the calcu-
lation of the sample size required to have a reasonable 
chance of statistical significance when there truly is an 
important difference or association. To effectively discuss 
sample size calculations, several key terms need to be 
defined (see Common Statistical Terms box).

The alternative or research hypothesis (HA) is a state-
ment about the difference or association one wants to 

Table 1. Characteristics of common study designs

Design Retro-
spective

Prospec-
tive

Random-
ization

Experi-
mental 
Study

Observa-
tional 
Study

Usually 
Lower 
Cost

What Can 
Be Shown?

Other Attributes  
of Design

Cross- 
sectional

√ √ √ Associations Independent and dependent 
variables measured at same 
time

Prospective 
cohort

√ √ Associations Permits observation of 
characteristics or behaviors 
over time

Retrospective 
cohort

√ √ √ Associations Efficient for cohort investiga-
tion of diseases with long 
latency periods

Case-control √ √ √ Associations Subjects selected based on 
whether they do (cases) or 
do not (controls) have a 
particular disease; good for 
studying rare diseases

Intervention 
study

√ √ √ Associations, 
potential 
intervention 
effect

Sometimes called “quasi-
experimental”; intervention 
on one group only

Randomized 
clinical trial 
(RCT)

√ √ √ Causation, 
intervention 
effect

Sample size and power 
must be adequate to detect 
the desired difference 
between study groups
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demonstrate. For example, a research hypothesis may be that 
supervised exercise sessions will improve systolic blood 
pressure (SBP) in patients with heart failure, compared with 
a similar group with no supervised exercise sessions pro-
vided. The null hypothesis (H0) is a statement of no differ-
ence, for example, the supervised exercise group will have 
the same change in SBP at the end of the study as the stan-
dard-care group.

Power is defined as the probability of rejecting the null 
hypothesis, based on the observed data, when the alternate 
hypothesis is assumed to be true. In other words, power is 
the probability that a statistical test will yield statistically 
significant results, given that the association really does 
exist. By convention, a study is often powered at 80% or 
90% (6,7) to yield a reasonable chance (i.e., 80%–90%) of 
detecting a difference if it truly exists.

There are two types of errors that can occur when mak-
ing conclusions from results of a statistical test (Table 2). 

The Type I error, denoted as alpha (α), rejects the null 
hypothesis when there truly is no association or difference. 
The Type II error, denoted as beta (β), is defined as not 
rejecting the null hypothesis when it is false. Restated, power 
is the probability of not making a Type II error. A power of 
80% implies a 20% probability of making a Type II error.

COMMON STATISTICAL TERMS

Term Definition
Null hypothesis (H0) Statement about the value of the population parameter (often states there is “no 

difference”)
Alternative or research hypothesis 

(HA)
Statement that contradicts null hypothesis (often states there is “some difference”)

Type I error Mistakenly rejecting the null hypothesis (H0)
Alpha (α) Probability of making a Type I error
Type II error Not rejecting H0 when H0 is false
Beta (β) Probability of making a Type II error
Power (1-β) Probability that a significant difference will be found, given that HA is true
Two-sided test Tests for a difference from the null hypothesis that can go in either direction  

(> or <)
Normal distribution Theoretical distribution of values that is symmetrical, unimodal, and bell shaped
Variance Measurement of the “typical” squared distance the values have from the sample 

mean
Standard deviation Commonly used measure of the spread or dispersion of data. The square root of the 

variance is the standard deviation
Standard error Standard deviation divided by the square root of n (sample size)
Dependent variable Variable that is identified as an effect, result, or outcome variable. Is sometimes 

viewed as being caused by the independent variable
Independent variable Variable that is identified as a possible causal variable
Confidence interval Provides a range of values that are intended to contain the parameter of interest with 

a specified degree of confidence
P value Probability of obtaining a result as extreme or more extreme than the actual sample 

value obtained, given that H0 is true
Prospective study Study subjects are followed forward in time
Retrospective study Subjects' characteristics determined from existing information
Observational study Observe the characteristics of subjects with no intervention by an investigator
Experimental study Impose certain characteristics on at least one group

TABLE 2. Possible outcomes of hypothesis testing.

Decision From 
Statistical Test

Reality

H
0
 True H

0
 True

Fail to reject H
0
 

(accept H
0
)

Correct decision Type II error (β)

Reject H
0

Type I error (α) Correct decision

H0: null hypothesis.
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By convention, α is usually set to be 0.05. Obviously, 
researchers would like the chance of both Type I and Type II 
errors to be small. However, holding all other assumptions 
constant, when one type of error is decreased, the other type 
is increased. Comparing the typical relative sizes of β (0.20 
or 0.10) to α (0.05) reflects the greater seriousness with 
which a Type I error is regarded.

A study should be powered high enough to have a rea-
sonable chance (80%–90% probability) of confirming the 
primary hypothesis if it is true. The power depends greatly 
on the sample size. The exact form of the sample size for-
mula depends on the statistical test planned for the analysis 
(7). Note that studies can be designed to have power to detect 
the effects for all secondary hypotheses as well, but this can 
be difficult and costly.

Table 3 shows an example of sample site calculations 
for the research question: Does SBP change after supervised 
exercise sessions in patients with heart failure? For these 
calculations, it was assumed there would be no change in the 
control group but that there would be hypothetical average 
SBP decreases between 2 and 10 in the exercise group. The 
average decrease was varied for the exercise group to dem-
onstrate the different sample sizes that would be required to 
have 90% power to detect those differences. As illustrated, 
the larger the sample size, the smaller the average decrease 
that has a reasonable chance of being detected.

In Table 3, the statistical test assumed in the sample size 
calculations is a two-sample Student's t test (to be discussed 
in Part 2 of this series). This statistical test was chosen 
because the analysis plan states that the mean difference in 
SBP between the exercise and control groups will be tested 
with a Student's t test. To calculate power, one needs an esti-
mate of the common variability in SBP among such patients. 
For instance, Keteyian and colleagues (8) reported an esti-
mate of 20 for a standard deviation for SBP among similar 
patients. Therefore, using an estimated standard deviation of 

20, a power of 90%, α level of 0.05, and two-sided testing, 
sample size calculations were performed that generated the 
numbers as presented in Table 3.

EFFECT OF INTEREST

The final critical element of a sample size calculation is the 
minimal clinically important difference, also called the effect 
of interest. An effect of interest can be selected based on 
input from the literature, from pilot study data, or from the 
investigator's clinical judgment after years of experience in 
the field. For example, in the scenario used to generate Table 
3, it is of interest to see a useful decrease in SBP in the super-
vised exercise group when compared to the standard-care 
group. The question the researcher must consider is, what 
amount of a decrease in the exercise group is clinically 
important? Most investigators would agree that a 2-point 
decrease in systolic blood pressure is not clinically useful, 
whereas a 10-point decrease is of clinical interest. The gray 
area is the 5- to 8-point difference.

As Table 3 shows, there is an inverse relationship 
between the effect of interest and sample size: The smaller 
the effect, the larger the sample size required, and vice versa. 
As another example, Table 4 shows a secondary prevention 
study designed with 90% power of detecting a 10% 5-year 
reinfarction rate in a supervised exercise group versus a 30% 
5-year reinfarction rate in a no-exercise control group. In 
this example, approximately 82 subjects would be required 
per group, assuming two-sided testing and an α level of 0.05 
(9). The required sample size increases when the difference 
of interest decreases. It is much harder to detect smaller dif-
ferences because the element of chance or random variation 
is so large relative to the intervention effect. However, an 
overpowered study can find an unimportant small effect 
when a larger one is really of clinical interest, thus almost 
certainly wasting time and resources.

TABLE 4. Sample size calculation example.

Standard Care 
Reinfarction Rate

Supervised Exercise Group 
Reinfarction Rate

Difference of Interest N per group Clinically Relevant 
Difference?

30% 25% 5% 1674 Probably not

30% 20% 10% 392 Maybe

30% 15% 15% 161 Likely

30% 10% 20% 82 Clearly

TABLE 3. Sample size calculation example.

Average Decrease in  
SBP in Control Group

Average Decrease in SBP in 
Supervised Exercise Group

N per group Clinically Relevant 
Difference?

0 2 2103 Probably not

0 5 338 Maybe

0 8 133 Likely

0 10 86 Clearly
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POWER IN NEGATIVE STUDIES

Accurate sample size calculations can help ensure the effi-
cient use of scarce research resources by avoiding unneces-
sarily large studies or those so small that they have little 
probability of detecting important effects. Perhaps just as 
important, however, is that an appropriate sample size be 
based on well-justified, clinically important differences will 
enhance the strength of a negative study. That is, a negative 
study that has adequate power is more definitive than one in 
which sample size and power did not receive careful atten-
tion in the planning stage. A classic paper by Freiman and 
colleagues (10) illustrates the point that many apparently 
negative results are merely inconclusive due to inadequate 
sample sizes and low power.

STATISTICAL INFERENCE

The role of data analysis is to summarize the information 
collected in a research project. The summarization process 
begins with the computation of descriptive statistics and 
may involve graphical representation of the data. However, 
the most important summarization may be the conclusions 
that are reached based on the data. At the heart of the statisti-
cal inference process there are both logical issues and math-
ematical considerations.

WHAT IS A P VALUE?

The logical process involved in standard statistical inference 
begins with some reasonable assumptions about the nature 
of the data, how it has been collected, and an assumption that 
the “null hypothesis” is true. Generally, the null hypothesis 
states that there is no effect due to the intervention or factor 
of interest. For instance, if the outcomes are summarized by 
means, the null hypothesis is a mean difference of zero. 
Given these initial assumptions and the observed data, a 
statistical test is performed by computing a test statistic that 
reflects the effect of interest. The probability is computed for 
all possible test statistics that are at least as far away from the 
value posited by the null hypothesis as the one observed. 
This probability is the “P value” for the test. If the computed 
P value is below the pre-specified alpha level (e.g., 0.05), 
this is considered evidence against the assumption stated in 
the null hypothesis. In fact, the null hypothesis is rejected 
and the alternative or research hypothesis is accepted.

In a randomized trial of the effect of exercise training in 
patients with heart failure (8), one outcome was the change 
from baseline to 24 weeks in peak exercise oxygen con-
sumption. In the control group, an increase of 58 ± 38 mL • 
min−1 was observed. For the exercise intervention group, the 
increase was 231 ± 54 mL • min−1. The t-statistic is equal to 
the difference in means (231 − 58) = 173, divided by the 
standard error for the difference (66.9 in this example). The 
t-statistic therefore had a value of 2.59. Figure 1 illustrates 
how the P value for this hypothesis test, which is 0.0154, 
relates to the distribution of the t-statistic under the null 
hypothesis. That is, the area or probability under the t-distri-
bution curve to the right of 2.59 and to the left of −2.59 is 

0.0154. The quantity 0.0154 is the P value for this test, and 
since it is less than 0.05, the null hypothesis of no effect of 
the intervention on exercise duration is rejected in favor of 
the alternative of a beneficial effect.

CONFIDENCE INTERVALS

It is often more informative to report confidence intervals 
instead of just P values alone or P values with point esti-
mates of the effect of interest. A confidence interval is com-
puted so that one has a specified level of confidence that the 
quantity of interest is captured. For instance, a 95% confi-
dence interval will include the quantity of interest, on aver-
age, 95 times out of 100. One useful interpretation of a con-
fidence interval is that it is the range of values that are 
statistically consistent with the observed data. Confidence 
intervals usually have a close connection to the hypothesis 
test result, in that if the null hypothesis value is included in 
the confidence interval, the null hypothesis is not rejected. 
Conversely, if the null value is outside the interval, the test is 
significant and the null value is rejected.

To illustrate, the 95% confidence interval for the differ-
ence between the intervention and control groups for maxi-
mal exercise oxygen consumption in the paper by Keteyian et 
al. (8) was 37 to 309. As expected from the significant 
hypothesis test result, the null hypothesis value of zero is not 
included in this interval. In the same study, the difference in 
the change in SBP was only 1.0 mm Hg in favor of the inter-
vention group, with a 95% confidence interval of −9 to 11. 
Therefore, the t test for SBP was nonsignificant with a P 
value of 0.842. Reporting both P values and point estimates 
along with confidence intervals is valid and complementary.

MULTIPLE COMPARISONS

The statistical inference process described above holds the 
probability of a Type I error to 5% or less for any single 
hypothesis test. However, there are many circumstances when 
a research project will need many hypothesis tests, and the 
tests may overlap in their implications. Statistical textbooks 
generally address multiple comparisons within the context of 
a one-way analysis of variance (ANOVA) when there are 
many means to be compared and many comparisons to be 
made among them. In this circumstance, there are several 
well-established options for doing the multiple comparisons, 
including the Scheffe test, Tukey's test, Fisher protected least 
significant difference (LSD), the Student-Newman-Keuls 
(SNK) and Duncan's multiple range tests, and Bonferroni (11). 
The Scheffe test tends to be very conservative, while Duncan's 
multiple range procedure may be too liberal. Fisher LSD and 
SNK methods are often useful but may be overly liberal when 
some cases allow the Type I error rate to exceed 0.05.

Although the multiple-comparison issue is most com-
monly associated with comparisons of means in a one-way 
ANOVA, it can arise in other circumstances. Consider a 
study of the effect of exercise on blood pressure in three 
groups: control (no exercise), aerobic exercise, and weight 
training. The study population may have multiple potential 
subcomponents. For instance, the effects for each sex, for 
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black people and white people, and for different age groups 
(e.g., ages 50-64 and ages 65-75) may be of interest. If sepa-
rate analyses are performed for each type of exercise and 
within every subpopulation, with the α level set to 0.05 for 
each, the probability of a Type I error among them will rise 
to something much higher than 0.05. In this example, with 
two types of exercise and eight subpopulations (i.e., white 
males ages 65-75, white males ages 50-64, etc.), the proba-
bility under null hypothesis that 1 P value out of the 16 will 
be under 0.05 will not be 1 in 20, but more than 1 in 2.

There are several approaches to maintaining a true over-
all α level in an experiment such as this. One technique is to 
use a much smaller critical level for each test so that the 
overall α level is held to 0.05. The simple Bonferroni adjust-
ment is often used for this. In this example, each of the 16 α 
levels is set to be equal to 0.05/16 = 0.003125. There are 
variations on Bonferroni, such as Holm's approach (12), 
which can allow some of the tests to be performed with a 
critical α level greater than 0.003125.

Another major option is to approach the analysis in logi-
cal stages. For instance, an analysis might begin with a single 

test for an exercise effect using all the data, and if it is signifi-
cant, only then are the many subgroups tested with α levels of 
0.05. Alternatively, when a large number of related tests are 
possible, a smaller, prespecified subset can be identified for 
primary testing to use a less restrictive adjusted α level.

Finally, there are those who argue that no multiple com-
parison adjustments are required if all the tests are of interest 
in and of themselves (13-15). The strongest argument in 
favor of this position may be the apparent logical inconsis-
tency that can result from considering the different conclu-
sions that the same (sub) set of data would support, depend-
ing on how many other groups were included in a study 
design. However, regardless of how multiple-comparison 
questions are addressed, it is strongly recommended that 
multiple-comparison issues be discussed in the analysis and 
reporting of results, even if only to explain why no adjust-
ment was undertaken.

SUMMARY

To make the best use of scarce research opportunities, 
researchers and those who make use of the research results 

FIGURE 1. Example of t test P value for maximal exercise oxygen consumption.
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both need to be aware of basic statistical concepts as well as 
the techniques of statistical inference. An understanding of 
the strengths and limitations of hypothesis testing and confi-
dence intervals is essential. Appropriate study design must 
start with a sample size calculation based on a meaningful 
effect of interest. With careful attention to statistical consid-
erations, the value of a research project can be enhanced, 

both for researchers directly involved and for those who 
make use of the results. The second paper in this two-part 
series will describe basic analytical techniques and discuss 
some common mistakes in the interpretation of data or study 
results.

Acknowledgments: Originally published in Clinical Exercise Physiology 
2001;3(3):121–126.
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