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INTRODUCTION

In the first part of this two-part series, issues important in the 
design of exercise physiology research were discussed, 
along with the basic concepts underlying statistical inference 
(1). In this second part, basic statistical methods and inter-
pretation of analysis results are reviewed, including further 
discussion of the importance of power and its implications in 
the reporting of negative studies. Additionally, the impor-
tance of critically evaluating research results for potential 
biases are described. Table 1 provides brief definitions for 
some of the statistical terms used in this paper (2,3,4).

ANALYSIS TECHNIQUES

The analysis techniques should fit the study design and the 
types of data collected. After identifying the type of data for 
both the outcome (dependent) variable and the predictor 
(independent) variable, the proper analysis method can be 
selected. Five common data types are nominal, binary, ordi-
nal, discrete, and continuous (Table 2).

Types of Data

Nominal or categorical types of data are data that are 
grouped but have no inherent ordering to them. For instance, 

the variable identifying treatment group (e.g. exercise vs. 
non-exercise) is considered a nominal variable. Hand domi-
nance, as in right-handed, left-handed, and ambidextrous, 
would be another example of nominal data. Binary data is a 
special case of nominal data in that it consists of only 2 cat-
egories. For example, biological sex is a binary variable.

Ordinal variables are slightly more complicated than 
nominal in that they are categorical variables with an inher-
ent ordering. The New York Heart Association functional 
classification of congestive heart failure is an example of an 
ordinal type of variable. Class I describes a patient who is 
not limited in normal physical activity by symptoms. Class 
II occurs when ordinary physical activity results in fatigue, 
dyspnea, or other symptoms. Class III is characterized by 
marked limitation in normal physical activity, while Class 
IV is defined by having symptoms at rest. Therefore, a Class 
II designation signifies more advanced heart failure than 
Class I, but it is unknown if the difference between Class I 
and Class II is the same as the difference between Class II 
and Class III.

This potential dissimilarity of the magnitudes of differ-
ences between the outcome values is what differentiates 
ordinal data from discrete or continuous data. For these latter 
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TABLE 1. Statistical terms.

Term Definition

Variable A name for measurements in a study

Dependent or Outcome Variable A variable that is identified as an effect, result, or outcome. The dependent variable is sometimes 
conceptually viewed as being caused by the independent variable

Independent or Predictor Variable A variable that is identified as a possible causal variable

Covariate Additional predictor variable. Often of secondary interest

Normal Distribution Theoretical distribution of values that is symmetrical, unimodal, and bell-shaped

Parametric Methods Used when the data studied are from a sample or population that is normally distributed. Data 
should be discrete or continuous

Nonparametric Methods Used when the data studied are from a sample or population that is not normally distributed

Univariable Analysis Analysis involving only 1 variable, e.g. paired t test

Bivariable Analysis Analysis involving 1 dependent variable and 1 independent variable. Also commonly referred to 
as univariate analysis

Multivariable Analysis Analysis involving 1 dependent variable but 2 or more independent variables

Multivariate Analysis Analysis involving more than 1 dependent variable

Relative Risk/Rate Ratio Risk of outcome when the factor of interest is present
Risk of outcome when the factor of interest is not present
Note: Typical measure in cohort studies

Odds Ratio Odds of outcome when the factor of interest is present
Odds of outcome when the factor of interest is not present
Note: Typical measure in retrospective and cross-sectional studies. An odds ratio can provide a 
reasonable estimate of the relative risk in certain circumstances

Blinding Being unaware of certain aspect(s) of the study. Typically, a single-blind study is when subjects in 
the study are unaware of which treatment they receive. A double-blind study is where both 
subject and study staff are unaware of which treatment is being administered

Validity Lack of systematic error

Internal Validity The validity of the inferences drawn as they pertain to the source population

External Validity (Generalizability) The validity of the inferences drawn as they pertain to people outside the source population. 
Internal validity is a prerequisite for external validity

Bias Any process at any stage of inference that tends to produce results or conclusions that differ 
systematically from the truth

Biologic Plausibility A known biological mechanism that supports the hypothesis of interest

Confounding When a third, possibly unsuspected, variable changes the apparent association between the 
study outcome and the factor of interest because of its relationship to both

TABLE 2. Types of data

Type of Data Definition Common Example(s)

Nominal (Categorical) Unordered categories Race: Black/White/Other

Binary Two categories; Special case of nominal Yes/No; True/False; Male/Female

Ordinal Ordered categories Functional symptom classification:  
None/Mild/Moderate/Severe

Discrete Ordering and magnitude important; restricted to 
specific values (usually integers)

Number of times subject has a MI; days per week 
exercised

Continuous Measurable quantity; not restricted to specific values Age; serum cholesterol; Peak VO
2

MI = myocardial infarction; VO2 = volume of oxygen consumed
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2 data types, a unit change has the same interpretation no 
matter where it is on a scale. Examples of discrete data, most 
often count data, are length of hospital stay (in days only) or 
counts of events such as number of emergency department 
visits in the past year. Continuous type data examples are 
weight, height, age, and many lab measurements.

Described below are common bivariable analysis meth-
ods for each data type, listed by outcome variable type. By 
definition, bivariate analysis is used when there is 1 outcome 

variable and 1 independent variable. Table 3 briefly describes 
some of the characteristics of the most common testing 
methods. More detailed guidance on how to select the most 
appropriate analysis technique is available (2).

CONTINUOUS OUTCOME VARIABLE
Two Sample Student t Tests

The 2-sample Student t test is probably the most commonly 
used statistical technique. This test is used with continuous, 

TABLE 3. Common statistical hypothesis testing methods and some of their characteristics.

Test
Number of 

Groups

Type of Data Required

Compares, Tests 
or Estimates Null Hypothesis Assumptionsa

Outcome 
Variable

Independent 
Variable

Paired t test 1 Continuous Categorical Mean Difference Mean 
Difference = 0

Normality; Paired 
data

Wilcoxon Signed 
Rank Test

1 Continuous 
Discrete or Ordinal

Categorical Center of 
Difference 
Distribution

Median 
Difference = 0

Symmetric 
distribution of 
differences

McNemar Test 1 Categorical Categorical Discordant Pairs A discordant pair is 
as likely to go in 
one direction as 
the other

Paired data

Pearson's 
Correlation

1 Continuous Continuous Linear Association The correlation is 0 Normality, Linear 
Relationship

Spearman's 
Correlation

1 Continuous 
Discrete or Ordinal

Continuous 
Discrete or Ordinal

Linear Association The correlation is 0 Independent and 
identically 
distributed

Simple Linear 
Regression

1 Continuous Continuous Slope and 
Intercept

Slope = 0 Normality, Linear 
Relationship

Two-Sample 
Student t Test

2 Continuous Categorical Means Mean 
Difference = 0

Normality; Equal 
variances

Wilcoxon Rank 
Sum Test

2 Continuous 
Discrete or Ordinal

Categorical Distributions Prob(x < y) = 0.5 
(The probability 
that an observation 
from group 1 is 
less than an 
observation from 
group 2 is 50%)

Distributions have 
same shape

χ2 / Fisher Exact 
Test

≥ 2 Categorical Categorical Proportions The proportions in 
all categories are 
equal

Independent and 
identically 
distributed

χ2 Test for Trend ≥ 2 Discrete or Ordinal Categorical Trend in 
Proportions

The proportions in 
all categories are 
equal

Independent and 
identically 
distributed

Analysis of 
Variance 
(ANOVA)

≥ 3 Continuous Categorical Means All the means are 
equal

Normality; Equal 
variances

Kruskal-Wallis 
Test

≥ 3 Continuous 
Discrete or Ordinal

Categorical Distributions Prob(x < y) = 0.5 
(The probability 
that an observation 
from group i is less 
than an 
observation from 
group j is 50%)

Distributions have 
same shape

aAll the tests shown require an assumption of independent observations and random sampling
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normally distributed variables from 2 independent groups 
with equal variances. It is selected when relating a continu-
ous outcome variable with a binary independent variable. 
For example, if the study consists of an exercise regimen 
group and non-exercise group, and compares the change in 
HDL cholesterol between the 2 groups, a 2-sample t test is 
often the appropriate test. The hypothesis tested by the t test 
is whether the mean change in HDL cholesterol is the same 
in the 2 groups.

One circumstance where the 2-sample t test would not 
be appropriate is if the data were dependent (not indepen-
dent). For example, in a single sample prospective cohort 
study, HDL cholesterol measurements are taken on a group 
of sedentary individuals at baseline and again after a 4-month 
exercise regime. The correct test to compare the average 
change in HDL would be a paired t test, as the data were 
measured before and after exercise training within the same 
group of people. A strength of the paired design is that each 
individual serves as their own control, which can reduce 
variance and, in turn, increase the chance of getting a statisti-
cally significant result, if a difference really exists.

Another circumstance where a Student t test is not 
appropriate is if the data are not normally distributed. One 
example would be the distribution of peak creatine phospho-
kinase (CPK) values for myocardial infarction (MI) patients 
as shown in Figure 1. For the analysis of such data, transfor-
mations or nonparametric testing methods should be 
employed. Common examples of data transformations are 
the square root, the log, and the inverse. Minor inequality of 
variances can be corrected using a modified form of the t test, 
such as the Welch test.

Analysis of Variance

One-way analysis of variance, or ANOVA, is the extension 
of the Student t test when more than 2 groups are compared. 
Again, the assumptions of continuous, normally distributed 
data from independent groups of data with equal variances 
are important here. ANOVA is selected when relating a con-
tinuous outcome variable with a nominal independent vari-
able. An example of when it is appropriate to use ANOVA is 
in a trial where individuals are randomly assigned to 3 
groups such as usual care (controls), usual care + mild exer-
cise, and usual care + moderate exercise. An outcome mea-
surement might be change in resting heart rate, which is a 
continuous and often normally distributed variable. The 
hypothesis tested by the one-way ANOVA is that the average 
change in resting heart rate is the same across the 3 groups.

Correlation

The two analysis methods discussed so far deal with tests of 
association between a continuous outcome variable and a 
nominal independent variable. When both variables (x and 
y) are continuous, the association is assessed by computing 
their correlation coefficient or by linear regression analysis. 
A correlation coefficient, denoted as r, expresses the extent 
to which when x is large, y is large, or when x is small, y is 
small. The correlation coefficient can take on values between 
−1.0 and 1.0, with 1.0 indicating perfect positive correlation 
and −1.0 indicating perfect negative correlation. The usual 
null hypothesis is that the correlation is 0, which indicates no 
(linear) association between x and y. That is, under the null 
hypothesis, knowing either x or y from a pair tells one 

FIGURE 1. Creatine Phosphokinase (CPK) Levels in 231 male patients hospitalized for 
first myocardial infarction (MI). The data appear to be from a skewed, non-normal 
distribution. These data would typically require transformation or analysis by non-
parametric techniques.
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nothing about what the corresponding y or x value is likely 
to be. Figure 2 shows the relationship between ejection frac-
tion and left ventricular (LV) score index in 231 male patients 
hospitalized for a first MI. In this example, the correlation is 
−0.46. This means there is a moderate relationship between 
low LV score index and high ejection fraction.

Regression

The association between x and y can also be expressed in a 
linear model that takes the form of a straight line: y = b0 + b1x, 
where b0 represents the intercept and b1 the slope. There is a 
very close relationship between a correlation analysis and 
linear regression. The null hypothesis that the slope is 0 is 
mathematically equivalent to the hypothesis that the correla-
tion is 0, and the significance tests and P values are the same. 
Figure 2 shows the regression line for ejection fraction as a 
function of LV score index. The regression equation is Ejec-
tion Fraction = 67.2 − 9.5 (LV score index). That is, the aver-
age expected ejection fraction decreases by 9.5% for a 1.0 
unit increase in LV score index.

NOMINAL OUTCOME VARIABLE
χ2 Test

A χ2 test is a commonly used test when data are grouped into 
categories. In particular, both the outcome and independent 
variables are nominal. For example, the most common type of 
categorical data are items measured with a yes or no response, 
such as when testing for the frequency or occurrence of an 
event during a study. In comparing outcomes in an exercise 
group with outcomes in a non-exercise group, χ2 tests would 
be used to compare the occurrence of shortness of breath. The 
data may also consist of more than two categories. For 
instance, if subjects are asked what time of day their shortness 
of breath was most bothersome and the possible responses are 
morning, afternoon, or night, a χ2 test can then be used to 
determine if there are differences in the typical time of day 

distribution between study groups. The χ2 test defined here is 
known as the χ2 test of independence or χ2 test of association.

The Fisher’s exact test is used in place of the χ2 test 
when an outcome and/or exposure is rare. The mathematical 
rule is that if the expected value of a cell is less than 5, a 
Fisher’s exact test should be used. Commonly, this can hap-
pen when 1 or more of the cell sizes are less than 10. A 
McNemar test is used in the paired data situation when there 
are 2 nominal variable types.

χ2 Test of Trend

A nominal outcome variable with an ordinal independent 
variable can be tested with a χ2 test of trend. For example, if 
the independent variable is discomfort upon exercise with 
categories mild, moderate, and severe, and the outcome is 
adherence to exercise regimen (yes/no), then a reasonable 
hypothesis to look at might be, does adherence to exercise 
regimen decrease with increasing levels of discomfort? The 
most appropriate statistical test for this hypothesis is the χ2 
test of trend.

ORDINAL OUTCOME DATA
Nonparametric Testing

Nonparametric tests are used when the data do not fit the 
assumption of continuous, normally distributed variables 
with equal variances in separate groups. In particular, non-
parametric tests are selected when testing ordinal outcome 
variables (Table 3). The Wilcoxon rank sum test is the non-
parametric alternative to the Student t test. The alternative to 
the paired t test is the signed rank test, and the alternative to 
ANOVA is the Kruskal-Wallis test. There is also a nonpara-
metric alternative to Pearson's correlation called Spearman's 
correlation. Each of these nonparametric methods is based 
upon ranking the data, and computing test statistics based 
upon those ranks. The lower sensitivity of ranks to outliers 
and other distributional characteristics is a major reason 
nonparametric methods are suitable when techniques with 
parametric assumptions do not hold. Applying parametric 
analysis techniques to data that does not fit the parametric 
assumptions can be improper and misleading.

Discrete Data

Analyzing discrete data can pose unique challenges. If dis-
crete data are normally distributed, analysis methods that 
depend on parametric assumptions can be selected. Often, 
however, the normality assumption is not met, and as a 
result, nonparametric tests must be used. A third option when 
dealing with discrete data is to categorize the data before 
analyzing it. For example, the number of prior MIs is a dis-
crete outcome variable that is often of interest. Due to scar-
city of data at the high end, it may be necessary to categorize 
as none, 1, and 2 or more.

MULTIVARIABLE ANALYSES

The above analysis sections have only described bivariable 
analyses, that is, when there is 1 outcome variable and 1 
independent variable. When there is more than 1 

FIGURE 2. Example of correlation between Left Ventricular (LV) 
Score Index and Ejection Fraction in 231 male patients 
hospitalized for first myocardial infarction (MI) (r = −0.46).
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independent variable to consider, multivariable analyses 
such as multiple linear regression, multiple logistic regres-
sion, or Cox regression need to be selected. When there is 
more than 1 outcome variable to be considered, multivariate 
methods such as multivariate ANOVA (MANOVA) can be 
selected. It is beyond the scope of this presentation to 
describe multivariate methods. Multivariable analysis can 
have many uses, including modeling, prediction, and testing 
for associations while taking into account other variables. 
There are numerous considerations to be taken into account 
for each of these applications. The presentation here will be 
limited to a brief description of a multiple logistic regression 
example.

Logistic Regression

Standard linear regression cannot be used to analyze binary 
outcomes. Since the outcome variable can only take on 2 
possible values, it cannot meet the normal distribution 
assumption. In addition, extreme values of the independent 
variable(s) will result in impossible predicted probabilities 
that will be greater than 1.0 or less than 0.0.

To address these issues, instead of modeling the proba-
bility of an outcome directly, a logistic model is fit. That is, 
a regression model predicting the logit of the probability of 
interest is fit to the data. In this case, a multiple logistic 
regression model would have the form:

( ) 0 1 1logit log
1 n n
pp x x
p

β β β 
= = + + + − 



where p is the probability of the event being modeled. As can 
be seen from Figure 3, for extreme values of the independent 
variable(s) the predicted logit values will asymptotically 
approach 0.0 or 1.0. Noting that p/(1−p) is the odds of the 
outcome of interest, it can be seen that each of the coeffi-
cients in the logistic equation gives the log of the change in 
the odds ratio for a unit change in the associated predictor 
variable.

For an example of a multiple logistic regression model, 
consider an analysis to assess the association between race 
and a prior diagnosis of hypertension among 328 men diag-
nosed with a first MI. Among 241 white patients, 98 (41%) 
reported a prior diagnosis of hypertension, compared to 47 
of 87 (54%) among black patients. This would give an esti-
mated odds ratio of 1.72 for hypertension for black MI 
patients (P = 0.032). However, age is also significantly asso-
ciated with both hypertension and race. The average age in 
years for hypertensives was 59.4 versus 56.0 for non-hyper-
tensives. For black patients the average age was 60.1 versus 
54.3 for whites. Since age is associated with both race and 
hypertension, it is a potential confounder.

A multiple logistic regression model can be used to 
estimate the odds ratio for race and hypertension, adjusting 
for age. For such a model, the coefficients are 0.449 and 
0.034 for black race and age, respectively. Expressed as odds 
ratios (by taking the anti-log for each coefficient), these cor-
respond to estimates of 1.57 and 1.03, respectively. The odds 
ratio after adjustment for age is still greater than the null 
hypothesis value of 1.0, but it is reduced and the P value is 
no longer quite significant (P = 0.083).

It is important to note that the odds ratio for age and 
hypertension of 1.03 is for each additional year of age. It is 
often convenient to rescale a variable like age in decades, so 
that the estimated odds ratio will have more significant dig-
its. In this case, the odds ratio for each additional decade of 
age is 1.40.

INTERPRETATION OF RESULTS

Interpreting results is just as important as collecting high-
quality data and doing the correct analysis. Described next 
are important issues to take into account after data has been 
collected and the basic analyses have been performed and 
summarized.

Failure to Use Critical Thinking

Although it may not qualify as a single mistake, the most 
common error in data interpretation is probably a failure to 
think critically. Colton (5) illustrates 9 types of data misin-
terpretation or “Fallacies in Numerical Reasoning.” In 1 of 
Colton's examples, the reader is asked to consider an asser-
tion that the common association of heart attacks with 
strenuous activity may be misleading, because only 2% of 
heart attacks occur during exercise and over 50% occur dur-
ing sleep or while otherwise at rest. Colton notes that most 
heart attack victims spend much less than 2% of their time 
exercising, so the heart attack rate per unit of exercise time 
will still be much higher than for sleep or rest if the appropri-
ate denominator is taken into account. If one were to survey 
MI patients and a control population about their physical 
activity, it would be important to be certain the responses 
applied to levels before the infarct. Failing to take into 
account the proper temporal association could result in erro-
neous conclusions about the strength of the association 
between activity and the risk of heart disease.

FIGURE 3. Illustration of the relationship between a probability 
(p) and its logit. logit(p) = log(p/(1 − p).
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Colton (5) and Roht and colleagues (6) both give many 
examples of basic misinterpretations of data that might be 
avoided by critical thinking.

Bias

Although most misinterpretations can be recognized and 
avoided by careful thought, a more systematic approach to 
considering such potential problems can be helpful. Heath 
(7) describes 8 types of bias that can affect epidemiologic 
studies when the data is collected. More general forms of 
bias can result from broader study design and interpretation 
issues. For instance, Sackett (4) lists 57 different biases in 6 
categories.

In its most basic form, bias may be due to the way in 
which observations are made. For instance, the routine clini-
cal measurement of blood pressure is subject to a large digit 
preference bias, where a reading such as 120/80 mmHg is 
much more common than one of 122/78 or 118/82. If this 
bias is just as likely to go in one direction as another, such 
measurements might satisfy the general definition of being 
accurate. That is, on average, they could give the correct 
blood pressure. However, if blood pressure is only measured 
to the nearest 10 mmHg, this would lack precision compared 
to the more appropriate nearest even integer. That is, such 
measurements would have only one-fifth of the potential 
precision. Figure 4 illustrates the difference between preci-
sion and accuracy. Ideally, measurements can be made with 
both precision and accuracy. For instance, study personnel 
can be trained to measure blood pressure accurately and 
without digit preference, and their performance can be veri-
fied by testing.

Finally, selection bias is very common in uncontrolled 
studies. For instance, when a new treatment is first tested, it 
might be ethically prudent to try and use relatively healthy 
patients who might best withstand unknown deleterious 
effects. More simply, if the usual medical practice of selec-
tion by indication is used, a case series will over-represent 
subjects who are most likely to benefit or who are most 
likely to do well.

When biases cannot be eliminated through their control 
by the study design, such as using a randomized control 
group and blinding, they can often be reduced by taking 
them into account when the data is analyzed. The section 
below on multivariable adjustment illustrates one way a bias 
due to confounding can be addressed.

Confounding

In a critical thinking example, Roht and colleagues (6) ask 
the reader to evaluate the observation that “judging by death 
rates of 1950 in the U.S., the safest occupation for men is 
messenger boy.” Although one might attribute such an 
observation to the protective effect of a messenger's high 
level of physical activity, a more basic explanation would be 
the young age for most messenger boys and the low death 
rates associated with youth. When both the study outcome 
and the factor of interest are associated with an important 
third factor, confounding will be present. That is, an 

association between the factor of interest and the outcome 
can be introduced or masked because of the association with 
the confounder. In this example, and in the race and hyper-
tension example given earlier, age was a confounder. Con-
founding can be avoided by a study design in which the 
groups to be compared are balanced with respect to potential 
confounders. For observational studies in which balance 
cannot be controlled as part of the design, it is often possible 
to make a statistical adjustment to correct for an imbalance. 
The latter was the approach illustrated using logistic regres-
sion for the race and hypertension example.

Internal Validity

Maintaining comparability among all subjects and measure-
ments in a study will preserve internal validity. For example, 
the Veterans Administration Cooperative Study on Anti-
hypertensive Agents (8) used an extensive placebo run-in 
period which was monitored to ensure the study population 
consisted of individuals who would actually take the pre-
scribed study medication. Having clear and uniform stan-
dards for making observations and collecting data is another 
critical factor for preserving internal study validity. Finally, 
the potential for a lack of internal validity is one of the major 
reasons that results from retrospective or uncontrolled cohort 
studies should be interpreted carefully.

External Validity (Generalizability)

Comparability of a study population to the population at 
large is usually required for external validity, where study 
results may be extrapolated to people or patients in general. 
There can be a trade-off between internal and external valid-
ity. For instance, in order to get as good an assessment of a 
treatment effect as possible, it is often the case the clinical 
trials are restricted to patients with greater severity or a par-
ticular time in the course of their disease. For instance, the 
National Institute of Neurological Disorders and Stroke trial 
of t-PA for stroke restricted enrollment to patients within 3 
hours of stroke onset (9). Although this allowed a definitive 
conclusion about the benefit of t-PA for stroke patients 
treated this early, it is not generalizable to the larger popula-
tion of stroke patients who present later.

Biologic Plausibility

Consideration of biologic plausibility can be an important 
issue to be addressed in the discussion section of a research 
paper. The analysis should generally be presented objec-
tively without undue influence from outside expectations. 
When the results and their implications are discussed more 
broadly, assessment of how well they fit with other knowl-
edge and theory is appropriate, if not essential to the success 
of the study.

Over-Interpreting Positive and Negative Study 
Results

When a study is complete and appropriate analysis methods 
have been applied, there are still issues to be addressed in 
reporting the results. When formal statistical hypothesis 
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testing has been conducted, there are three main possible 
conclusions that can be reached: (a) The null hypothesis 
(Ho) has been rejected and therefore the factor of interest is 
associated with the outcome. (b) The Ho is not rejected, and 
there is evidence against a useful association. (c) The Ho is 
not rejected, but there is not enough evidence to rule out an 
important association.

When a study gives negative results, the presentation 
and interpretation should be approached carefully. A 

negative result may mean that the study has essentially 
proven the null hypothesis, or it may merely mean that not 
enough information was obtained to reach a definitive con-
clusion. Choosing between these two alternatives is impor-
tant, especially when no formal sample size or power calcu-
lation was performed in the planning phase of a project. This 
is common when data from an existing dataset is analyzed to 
address a new question or a question that is secondary to the 
original goals of the project.

FIGURE 4. Precision alone can be thought of as a tight cluster of observations, with little spread among them, with the center not on the 
center mark, which represents truth. Accuracy alone occurs when the average of the points, no matter how spread out, end up in the center, 
representing truth. A desirable measure, hence, has both precision and accuracy.
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In this situation it can be extremely useful to compute a 
confidence interval for the basic summary measure that was 
not statistically significant. Since a confidence interval con-
tains all the values that are statistically consistent with the 
observed data, if the confidence interval is narrow and 
excludes whatever the minimal clinically important effect 
should be, the study can be regarded as giving a definitive 
negative result. For example, according to a report from the 
Physician's Health Study, the relative risk of a cardiovascu-
lar event associated with having periodontal disease is 1.01 
with a confidence interval of 0.88 to 1.15, after adjustment 
for important covariates such as level of physical activity 
(10). Since an excess risk of a 15% or less may not be of 
much practical importance, this should probably be regarded 
as a definitive negative result, subject only to the potential 
limitations for a non-randomized cohort study.

The second alternative for a negative result, where the 
confidence interval is wide, might be illustrated by the 
results of the MRFIT trial, when the main study report gave 
an estimated 7.1% reduction in mortality from coronary 
heart disease (CHD), with a 90% confidence interval of 
−15% to 25% (11). Since a 25% reduction in CHD mortality 
might be clinically useful, this negative result, while very 
discouraging, was not quite definitive, since it was still con-
sistent with a clinically useful treatment effect.

Another way to assess the strength of a negative result 
could be to do a post hoc sample size or power calculation. 
Unfortunately, there are several ways that such calculations 
are performed, and the easiest ones may be uninformative or 
misleading. The least useful calculation is to present the 
power for the data and analysis just performed. Some data 
analysis software packages such as SPSS (12) automatically 
calculate power when statistical tests are performed. Unfor-
tunately, the power that is automatically computed is for the 
particular effect that was contained in the data analyzed. 
This effect need not coincide with the minimal clinically 
important difference. Another limitation of such a power 
estimate is that it is basically a just one-to-one function of 
the P value for the test performed.

It would be more informative to report the sample size 
that would give 80% or 90% power for the observed effect. 
However, it would be most useful to employ the observed 
variability and compute the power to detect the minimum 
clinically important difference using the sample size of that 

study. In the case of the MRFIT trial, even though a careful 
sample size calculation was done at the planning stage of the 
study, a recalculation of the power taking into account the 
lower control group death rate, yielded a power of only 60% 
(13).

Confusing Statistical Significance and Clinical 
Significance

The preceding section discussed the situation where a 
researcher might be misled by a data analysis result of no 
(statistical) significance and conclude the results imply no 
clinical or practical significance.

Conversely, an extremely large sample size can result in 
very low P values for observed effects that may have little or 
no importance. For example, if a large observational study 
comparing active versus inactive individuals had a sample 
size of 3,100 per group, a blood pressure difference of 2.0 
mmHg would be statistically significant (P < 0.0001). How-
ever, the 95% confidence interval would range from 1.0 to 
3.0 mmHg. Thus, although such a blood pressure difference 
would be statistically significant, at the same time it would 
rule out most differences of any real practical importance.

A more concrete example might be the CAPRIE trial 
results, where compared to aspirin, clopidogrel reduced the 
relative risk of stroke, MI, or vascular death by 8.7% 
(P = 0.043) with a 95% confidence interval of 0.3% to 16.5% 
(14). Although the P value was significant and the results 
were reported as positive, others have commented that the 
benefit of clopidogrel is modest, considering its expense in 
comparison to aspirin (15).

SUMMARY

After an appropriate design and sample size have been 
selected, when implementing a research study it is important 
to proceed with care in collecting the data and in selecting 
the appropriate data analysis. Critical thinking is also 
required when interpreting and presenting the results of the 
study. Negative study results in particular should be inter-
preted carefully. With diligent attention to the design, imple-
mentation, analysis and interpretation of research studies, 
researchers can make the best use of scarce research 
resources.
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